催化学报 ›› 2019, Vol. 40 ›› Issue (10): 1408-1420.DOI: 10.1016/S1872-2067(19)63399-1

• 综述 • 上一篇    下一篇

基于三氧化钨的光阳极水氧化综述

黄静伟a,b, 岳彭飞a, 王磊a, 佘厚德a, 王其召a,c,d   

  1. a 西北师范大学化学化工学院, 甘肃省军民融合先进结构材料研究中心, 保水化学功能材料甘肃省国际科技合作基地, 甘肃兰州 730070;
    b 广东工业大学环境科学与工程学院, 环境健康与污染控制研究院, 广州市环境催化与健康风险控制重点实验室, 广东广州 510006;
    c 哈尔滨师范大学物理与电子工程学院, 光电带隙材料省部共建教育部重点实验室, 黑龙江哈尔滨 150025;
    d 长安大学环境科学与工程学院, 陕西西安 710064
  • 收稿日期:2019-03-13 修回日期:2019-04-11 出版日期:2019-10-18 发布日期:2019-08-26
  • 通讯作者: 王其召
  • 基金资助:
    国家自然科学基金(21808189,21663027);甘肃省科技支撑计划(1504GKCA027);西北师范大学创新科研团队(NWNULKQN-15-2);广州市环境催化与污染控制重点实验室开放基金(GKLECPC-12);绿色催化四川省高校重点实验室开放基金(LYJ18205).

A review on tungsten-trioxide-based photoanodes for water oxidation

Jingwei Huanga,b, Pengfei Yuea, Lei Wanga, Houde Shea, Qizhao Wanga,c,d   

  1. a College of Chemistry and Chemical Engineering, Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou 730070, Gansu, China;
    b Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, China;
    c Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China;
    d School of Environmental Science and Engineering, Chang'an University, Xi'an 710064, Shaanxi, China
  • Received:2019-03-13 Revised:2019-04-11 Online:2019-10-18 Published:2019-08-26
  • Supported by:
    This work was financially supported by the National Natural Science Foundation of China (21808189, 21663027), the Science and Technology Support Project of Gansu Province (1504GKCA027), the Program for Innovative Research Team (NWNULKQN-15-2), the Opening Project of Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control (GKLECPC-12), and the Opening Project of Key Laboratory of Green Catalysis of Sichuan Institutes of High Education (LYJ18205).

摘要: 光电催化水分解技术可以在分离的空间内分别进行水的还原和氧化反应生成氢气和氧气,是一种高效的光能到氢能的转换技术,因而受到研究者的广泛关注.光电催化水分解过程中,阳极上发生的水氧化反应是一个四电子转移过程,是水分解反应的限速步骤.为了提高光电催化水分解中阴极的产氢效率,应当优先提高阳极上的水氧化反应效率.在众多的光阳极中,三氧化钨由于其带隙窄和价带位置高而成为理想的光阳极材料之一.尽管如此,三氧化钨阳极的实际应用受到光生电子和空穴的严重复合以及电极表面缓慢反应动力学的限制.
本文详细介绍了三氧化钨材料作为光阳极用于光电催化水氧化反应的优缺点,并从形貌控制、构造缺陷、构建异质结、负载助催化剂及应用等离子体效应等方面对提高三氧化钨阳极水氧化性能进行了综述.通过形貌控制可以增大电极的比表面积或降低材料的厚度,有利于光生电荷迁移到电极表面;在三氧化钨上引入适量的化学缺陷可以提供大量的反应位点,有利于光生电荷的传输;通过构建异质结可以有效促进三氧化钨电极内的光生电荷分离,提高整个复合电极的光吸收效率.如果构建异质结的另一种材料本身也是一种水氧化助催化剂,那么该材料可以起到分离光生电荷和提高表面催化效率的双重作用;负载助催化剂可以提高三氧化钨电极表面的反应活性,进而提高到达电极表面的光生电荷利用效率,得到提高的光电流和降低的起始电位;在三氧化钨电极上负载具有等离子效应的金属(如贵金属金、银等)可以提高电极的光电转换效率.
光电催化水分解包含光的吸收、光生电荷分离和分离的光生电荷参与反应三个过程.只有当这三个过程的效率同时得到提高时,光电催化水分解的效率才能达到最高.尽管本文介绍的这些措施都可以提高三氧化钨电极的性能,但这些措施往往局限于从一个方面来提高电极性能.在未来的研究中,可以通过提高反应中的上述两个或三个过程的效率来实现三氧化钨电极更高的光电催化水氧化性能.

关键词: 三氧化钨光阳极, 水分解, 缺陷, 异质结, 助催化剂

Abstract: Photoelectrochemical (PEC) water splitting capable of reducing and oxidizing water into hydrogen and oxygen in a generation mode of spatial separation has gained extensive popularity. In order to effectively produce hydrogen at the photocathode of a PEC cell, the photoanode, where the oxygen evolution reaction occurs, should be systematically developed on priority. In particular, WO3 has been identified as one of the most promising photoanode materials owing to its narrow band gap and high valence band position. Its practical implementation, however, is still limited by excessive electron-hole recombination and poor water oxidation kinetics. This review presents the various strategies that have been studied for enhancing the PEC water oxidation performance of WO3, such as controlling the morphology, introducing defects, constructing a heterojunction, loading a cocatalyst, and exploiting the plasmonic effect. In addition, the possible future research directions are presented.

Key words: WO3 photoanode, Water splitting, Defect, Heterojunction, Cocatalyst