催化学报 ›› 2019, Vol. 40 ›› Issue (10): 1408-1420.DOI: 10.1016/S1872-2067(19)63399-1
黄静伟a,b, 岳彭飞a, 王磊a, 佘厚德a, 王其召a,c,d
收稿日期:
2019-03-13
修回日期:
2019-04-11
出版日期:
2019-10-18
发布日期:
2019-08-26
通讯作者:
王其召
基金资助:
Jingwei Huanga,b, Pengfei Yuea, Lei Wanga, Houde Shea, Qizhao Wanga,c,d
Received:
2019-03-13
Revised:
2019-04-11
Online:
2019-10-18
Published:
2019-08-26
Supported by:
摘要: 光电催化水分解技术可以在分离的空间内分别进行水的还原和氧化反应生成氢气和氧气,是一种高效的光能到氢能的转换技术,因而受到研究者的广泛关注.光电催化水分解过程中,阳极上发生的水氧化反应是一个四电子转移过程,是水分解反应的限速步骤.为了提高光电催化水分解中阴极的产氢效率,应当优先提高阳极上的水氧化反应效率.在众多的光阳极中,三氧化钨由于其带隙窄和价带位置高而成为理想的光阳极材料之一.尽管如此,三氧化钨阳极的实际应用受到光生电子和空穴的严重复合以及电极表面缓慢反应动力学的限制.
本文详细介绍了三氧化钨材料作为光阳极用于光电催化水氧化反应的优缺点,并从形貌控制、构造缺陷、构建异质结、负载助催化剂及应用等离子体效应等方面对提高三氧化钨阳极水氧化性能进行了综述.通过形貌控制可以增大电极的比表面积或降低材料的厚度,有利于光生电荷迁移到电极表面;在三氧化钨上引入适量的化学缺陷可以提供大量的反应位点,有利于光生电荷的传输;通过构建异质结可以有效促进三氧化钨电极内的光生电荷分离,提高整个复合电极的光吸收效率.如果构建异质结的另一种材料本身也是一种水氧化助催化剂,那么该材料可以起到分离光生电荷和提高表面催化效率的双重作用;负载助催化剂可以提高三氧化钨电极表面的反应活性,进而提高到达电极表面的光生电荷利用效率,得到提高的光电流和降低的起始电位;在三氧化钨电极上负载具有等离子效应的金属(如贵金属金、银等)可以提高电极的光电转换效率.
光电催化水分解包含光的吸收、光生电荷分离和分离的光生电荷参与反应三个过程.只有当这三个过程的效率同时得到提高时,光电催化水分解的效率才能达到最高.尽管本文介绍的这些措施都可以提高三氧化钨电极的性能,但这些措施往往局限于从一个方面来提高电极性能.在未来的研究中,可以通过提高反应中的上述两个或三个过程的效率来实现三氧化钨电极更高的光电催化水氧化性能.
黄静伟, 岳彭飞, 王磊, 佘厚德, 王其召. 基于三氧化钨的光阳极水氧化综述[J]. 催化学报, 2019, 40(10): 1408-1420.
Jingwei Huang, Pengfei Yue, Lei Wang, Houde She, Qizhao Wang. A review on tungsten-trioxide-based photoanodes for water oxidation[J]. Chinese Journal of Catalysis, 2019, 40(10): 1408-1420.
[1] World population clock, http://www.worldometers.info/world-population. [2] T. Hisatomi, J. Kubota, K. Domen, Chem. Soc. Rev., 2014, 43, 7520-7535. [3] M. Grätzel, Nature, 2001, 414, 338-344. [4] Z. Wang, L. Wang, Chin. J. Catal., 2018, 39, 369-378. [5] A. Fujishima, K. Honda, Nature, 1972, 238, 37-38. [6] S. Corby, L. Francàs, S. Selim, M. Sachs, C. Blackman, A. Kafizas, J. R. Durrant, J. Am. Chem. Soc., 2018, 140, 16168-16177. [7] G. A. de Wijs, P. K. de Boer, R. A. de Groot, G. Kresse, Phys. Rev. B, 1999, 59, 2684-2693. [8] M. D. Bhatt, J. S. Lee, J. Mater. Chem. A, 2015, 3, 10632-10659. [9] P. M. Woodward, A. W. Sleight, T. Vogt, J. Solid State Chem., 1997, 131, 9-17. [10] R. Diehl, G. Brandt, E. Salje, Acta Crystallogr. B, 1978, 34, 1105-1111. [11] T. Vogt, P. M. Woodward, B. A. Hunter, J. Solid State Chem., 1999, 144, 209-215. [12] E. Salje, Acta Crystallogr. B, 1977, 33, 574-577. [13] W. L. Kehl, R. G. Hay, D. Wahl, J. Appl. Phys., 1952, 23, 212-215. [14] B. Gerand, G. Nowogrocki, J. Guenot, M. Figlarz, J. Solid State Chem., 1979, 29, 429-434. [15] D. B. Migas, V. L. Shaposhnikov, V. N. Rodin, V. E. Borisenko, J. Appl. Phys., 2010, 108, 093713. [16] G. Hodes, D. Cahen, J. Manassen, Nature, 1976, 260, 312-313. [17] W. Kim, T. Tachikawa, D. Monllor-Satoca, H.-I. Kim, T. Majima, W. Choi, Energy Environ. Sci., 2013, 6, 3732-3739. [18] M. Yang, H. He, H. Zhang, X. Zhong, F. Dong, G. Ke, Y. Chen, J. Du, Y. Zhou, Electrochim. Acta, 2018, 283, 871-881. [19] K. Fuku, N. Wang, Y. Miseki, T. Funaki, K. Sayama, ChemSusChem, 2015, 8, 1593-1600. [20] J. Zhang, X. Chang, C. Li, A. Li, S. Liu, T. Wang, J. Gong, J. Mater. Chem. A, 2018, 6, 3350-3354. [21] J. C. Hill, K.-S. Choi, J. Phys. Chem. C, 2012, 116, 7612-7620. [22] J. Su, X. Feng, J. D. Sloppy, L. Guo, C. A. Grimes, Nano Lett., 2011, 11, 203-208. [23] W. Li, P. Da, Y. Zhang, Y. Wang, X. Lin, X. Gong, G. Zheng, ACS Nano, 2014, 8, 11770-11777. [24] S. Wang, H. Chen, G. Gao, T. Butburee, M. Lyu, S. Thaweesak, J.-H. Yun, A. Du, G. Liu, L. Wang, Nano Energy, 2016, 24, 94-102. [25] W. Shi, H. Li, J. Chen, X. Lv, Y. Shen, Electrochim. Acta, 2017, 225, 473-481. [26] R. M. Fernández-Domene, R. Sánchez-Tovar, B. Lucas-Granados, G. Roselló-Márquez, J. García-Antón, Mater. Design, 2017, 116, 160-170. [27] W. Li, C. Liu, Y. Yang, J. Li, Q. Chen, F. Liu, Mater. Lett., 2012, 84, 41-43. [28] Q. Chen, J. Li, B. Zhou, M. Long, H. Chen, Y. Liu, W. Cai, W. Shangguan, Electrochem. Commun., 2012, 20, 153-156. [29] Q. Zeng, J. Li, J. Bai, X. Li, L. Xia, B. Zhou, Appl. Catal. B, 2017, 202, 388-396. [30] D. D. Qin, C. L. Tao, S. A. Friesen, T. H. Wang, O. K. Varghese, N. Z. Bao, Z. Y. Yang, T. E. Mallouk, C. A. Grimes, Chem. Commun., 2012, 48, 729-731. [31] A. Kafizas, L. Francàs, C. Sotelo-Vazquez, M. Ling, Y. Li, E. Glover, L. McCafferty, C. Blackman, J. Darr, I. Parkin, J. Phys. Chem. C, 2017, 121, 5983-5993. [32] P. M. Rao, I. S. Cho, X. Zheng, Proc. Combust. Inst., 2013, 34, 2187-2195. [33] P. M. Rao, X. Zheng, Proc. Combust. Inst., 2011, 33, 1891-1898. [34] F. Zheng, M. Zhang, M. Guo, Thin Solid Films, 2013, 534, 45-53. [35] L. Li, X. Zhao, D. Pan, G. Li, Chin. J. Catal., 2017, 38, 2132-2140. [36] A. Jelinska, K. Bienkowski, M. Jadwiszczak, M. Pisarek, M. Strawski, D. Kurzydlowski, R. Solarska, J. Augustynski, ACS Catal., 2018, 8, 10573-10580. [37] G. H. Go, P. S. Shinde, C. H. Doh, W. J. Lee, Mater. Design, 2016, 90, 1005-1009. [38] D. Chandra, K. Saito, T. Yui, M. Yagi, ACS Sustain. Chem. Eng., 2018, 6, 16838-16846. [39] S. Hilliard, G. Baldinozzi, D. Friedrich, S. Kressman, H. Strub, V. Artero, C. Laberty-Robert, Sustain. Energy Fuels, 2017, 1, 145-153. [40] K. Song, F. Gao, W. Yang, E. Wang, Z. Wang, H. Hou, ChemElectro-Chem, 2018, 5, 322-327. [41] Y. Liu, L. Liang, C. Xiao, X. Hua, Z. Li, B. Pan, Y. Xie, Adv. Energy Mater., 2016, 6, 1600437. [42] X. Feng, Y. Chen, Z. Qin, M. Wang, L. Guo, ACS Appl. Mater. Interfaces, 2016, 8, 18089-18096. [43] L. Zhuang, L. Ge, Y. Yang, M. Li, Y. Jia, X. Yao, Z. Zhu, Adv. Mater., 2017, 29, 1606793. [44] D. Yan, Y. Li, J. Huo, R. Chen, L. Dai, S. Wang, Adv. Mater., 2017, 29, 1606459. [45] J. Zheng, Y. Lyu, R. Wang, C. Xie, H. Zhou, S.P. Jiang, S. Wang, Nat. Commun., 2018, 9, 3572. [46] C. Shi, X. Dong, X. Wang, H. Ma, X. Zhang, Chin. J. Catal., 2018, 39, 128-137. [47] K. Qi, S.-Y. Liu, M. Qiu, Chin. J. Catal., 2018, 39, 867-875. [48] Y. Zhao, S. Balasubramanyam, R. Sinha, R. Lavrijsen, M. A. Verheijen, A. A. Bol, A. Bieberle-Hütter, ACS Appl. Energy Mater., 2018, 1, 5887-5895. [49] M. Ma, K. Zhang, P. Li, M. S. Jung, M. J. Jeong, J. H. Park, Angew. Chem., 2016, 128, 11998-12002. [50] T. Soltani, A. Tayyebi, H. Hong, M. H. Mirfasih, B.-K. Lee, Sol. Energy Mater. Sol. Cells, 2019, 191, 39-49. [51] R. Zhang, F. Ning, S. Xu, L. Zhou, M. Shao, M. Wei, Electrochim. Acta, 2018, 274, 217-223. [52] T. Singh, R. Müller, J. Singh, S. Mathur, Appl. Surf. Sci., 2015, 347, 448-453. [53] S. Q. Yu, Y. H. Ling, J. Zhang, F. Qin, Z. J. Zhang, Int. J. Hydrogen Energy, 2017, 42, 20879-20887. [54] F. Chen, H. Huang, L. Ye, T. Zhang, Y. Zhang, X. Han, T. Ma, Adv. Funct. Mater., 2018, 28, 1804284. [55] F. Li, J. Li, F. Li, L. Gao, X. Long, Y. Hu, C. Wang, S. Wei, J. Jin, J. Ma, J. Mater. Chem. A, 2018, 6, 13412-13418. [56] T. A. Pham, Y. Ping, G. Galli, Nat. Mater., 2017, 16, 401-408. [57] M. Qureshi, K. Takanabe, Chem. Mater., 2017, 29, 158-167. [58] H. Huang, K. Xiao, Y. He, T. Zhang, F. Dong, X. Du, Y. Zhang, Appl. Catal. B, 2016, 199, 75-86. [59] C. Zhou, A. L. Wang, W. Xiao, D. Chao, X. Zhang, N. H. Tiep, S. Chen, J. Kang, X. Wang, J. Ding, J. Wang, H. Zhang, H. J. Fan, Adv. Mater., 2018, 30, 1705516. [60] A. P. Singh, N. Kodan, B. R. Mehta, A. Held, L. Mayrhofer, M. Mose-ler, ACS Catal., 2016, 6, 5311-5318. [61] H. Huang, X. Han, X. Li, S. Wang, P. K. Chu, Y. Zhang, ACS Appl. Mater. Interfaces, 2015, 7, 482-492. [62] B. Chai, C. Liu, C. Wang, J. Yan, Z. Ren, Chin. J. Catal., 2017, 38, 2067-2075. [63] S. Kment, F. Riboni, S. Pausova, L. Wang, L. Wang, H. Han, Z. Hu-bicka, J. Krysa, P. Schmuki, R. Zboril, Chem. Soc. Rev., 2017, 46, 3716-3769. [64] A. Kafizas, Y. Ma, E. Pastor, S. R. Pendlebury, C. Mesa, L. Francàs, F. Le Formal, N. Noor, M. Ling, C. Sotelo-Vazquez, C. J. Carmalt, I. P. Parkin, J. R. Durrant, ACS Catal., 2017, 7, 4896-4903. [65] S. M. H. Hejazi, J. Aghazadeh Mohandesi, M. Javanbakht, Sol. Ener-gy, 2017, 144, 699-706. [66] X. Li, J.-L. Shi, H. Hao, X. Lang, Appl. Catal. B, 2018, 232, 260-267. [67] X. Zhou, N. Liu, P. Schmuki, ACS Catal., 2017, 7, 3210-3235. [68] H. Yu, W. Liu, X. Wang, F. Wang, Appl. Catal. B, 2018, 225, 415-423. [69] C. Khare, K. Sliozberg, R. Meyer, A. Savan, W. Schuhmann, A. Lud-wig, Int. J. Hydrogen Energy, 2013, 38, 15954-15964. [70] W. Sun, D. Wang, Z. U. Rahman, N. Wei, S. Chen, J. Alloys Compd., 2017, 695, 2154-2159. [71] A. A. Ismail, I. Abdelfattah, A. Helal, S. A. Al-Sayari, L. Robben, D. W. Bahnemann, J. Hazard. Mater., 2016, 307, 43-54. [72] J. Mioduska, A. Zielinska-Jurek, M. Janczarek, J. Hupka, J. Nano-mater., 2016, 2016, 3145912. [73] I. A. Castro, G. Byzynski, M. Dawson, C. Ribeiro, J. Photochem. Photobiol. A, 2017, 339, 95-102. [74] C. Sotelo-Vazquez, R. Quesada-Cabrera, M. Ling, D. O. Scanlon, A. Kafizas, P. K. Thakur, T.-L. Lee, A. Taylor, G. W. Watson, R. G. Pal-grave, J. R. Durrant, C. S. Blackman, I. P. Parkin, Adv. Funct. Mater., 2017, 27, 1605413. [75] S. Meng, W. Sun, S. Zhang, X. Zheng, X. Fu, S. Chen, J. Phys. Chem. C, 2018, 122, 26326-26336. [76] P. Wei, K. Lin, D. Meng, T. Xie, Y. Na, ChemSusChem, 2018, 11, 1746-1750. [77] K. R. Tolod, S. Hernandez, N. Russo, Catalysts, 2017, 7, 13. [78] H. L. Tan, R. Amal, Y. H. Ng, J. Mater. Chem. A, 2017, 5, 16498-16521. [79] P. Chatchai, Y. Murakami, S.-Y. Kishioka, A. Y. Nosaka, Y. Nosaka, Electrochim. Acta, 2009, 54, 1147-1152. [80] J. Su, L. Guo, N. Bao, C. A. Grimes, Nano Lett., 2011, 11, 1928-1933. [81] P. M. Rao, L. Cai, C. Liu, I. S. Cho, C. H. Lee, J. M. Weisse, P. Yang, X. Zheng, Nano Lett., 2014, 14, 1099-1105. [82] Y. Pihosh, I. Turkevych, K. Mawatari, T. Asai, T. Hisatomi, J. Uemura, M. Tosa, K. Shimamura, J. Kubota, K. Domen, T. Kitamori, Small, 2014, 10, 3692-3699. [83] Y. Zhou, L. Zhang, L. Lin, B. R. Wygant, Y. Liu, Y. Zhu, Y. Zheng, C. B. Mullins, Y. Zhao, X. Zhang, G. Yu, Nano Lett., 2017, 17, 8012-8017. [84] H. Zhang, W. Zhou, Y. Yang, C. Cheng, Small, 2017, 13, 1603840. [85] N. Iqbal, I. Khan, Z. H. A. Yamani, A. Qurashi, Sol. Energy, 2017, 144, 604-611. [86] Q. Zeng, J. Li, L. Li, J. Bai, L. Xia, B. Zhou, Appl. Catal. B, 2017, 217, 21-29. [87] S. Xu, D. Fu, K. Song, L. Wang, Z. Yang, W. Yang, H. Hou, Chem. Eng. J., 2018, 349, 368-375. [88] T. Stoll, G. Zafeiropoulos, I. Dogan, H. Genuit, R. Lavrijsen, B. Koopmans, M.N. Tsampas, Electrochem. Commun., 2017, 82, 47-51. [89] Z. Ma, K. Song, L. Wang, F. Gao, B. Tang, H. Hou, W. Yang, ACS Appl. Mater. Interfaces, 2019, 11, 889-897. [90] K. Kim, S. K. Nam, J. H. Park, J. H. Moon, J. Mater. Chem. A, 2019, 7, 4480-4485. [91] I. Grigioni, K. G. Stamplecoskie, E. Selli, P. V. Kamat, J. Phys. Chem. C, 2015, 119, 20792-20800. [92] S. Y. Chae, C. S. Lee, H. Jung, O.-S. Joo, B. K. Min, J. H. Kim, Y. J. Hwang, ACS Appl. Mater. Interfaces, 2017, 9, 19780-19790. [93] I. Grigioni, K. G. Stamplecoskie, D. H. Jara, M. V. Dozzi, A. Oriana, G. Cerullo, P. V. Kamat, E. Selli, ACS Energy Lett., 2017, 2, 1362-1367. [94] I. Grigioni, M. Abdellah, A. Corti, M. V. Dozzi, L. Hammarström, E. Selli, J. Am. Chem. Soc., 2018, 140, 14042-14045. [95] D. A. Grave, N. Yatom, D. S. Ellis, M. C. Toroker, A. Rothschild, Adv. Mater., 2018, 30, 1706577. [96] Y. Yang, S. Niu, D. Han, T. Liu, G. Wang, Y. Li, Adv. Energy Mater., 2017, 7, 1700555. [97] W. Luo, T. Yu, Y. Wang, Z. Li, J. Ye, Z. Zou, J. Phys. D, 2007, 40, 1091-1096. [98] K. P. Regan, C. Koenigsmann, S. W. Sheehan, S. J. Konezny, C. A. Schmuttenmaer, J. Phys. Chem. C, 2016, 120, 14926-14933. [99] K. Sivula, F. Le Formal, M. Grätzel, Chem. Mater., 2009, 21, 2862-2867. [100] T. Jin, P. Diao, Q. Wu, D. Xu, D. Hu, Y. Xie, M. Zhang, Appl. Catal. B, 2014, 148-149, 304-310. [101] S. Bai, X. Yang, C. Liu, X. Xiang, R. Luo, J. He, A. Chen, ACS Sustain. Chem. Eng., 2018, 6, 12906-12913. [102] S. Y. Lim, W. Shen, Z. Gao, Chem. Soc. Rev., 2015, 44, 362-381. [103] Z. Zhao, T. Butburee, P. Peerakiatkhajohn, M. Lyu, S. Wang, L. Wang, H. Zheng, ChemistrySelect, 2016, 1, 2772-2777. [104] W. Shi, X. Zhang, J. Brillet, D. Huang, M. Li, M. Wang, Y. Shen, Car-bon, 2016, 105, 387-393. [105] W. Kong, X. Zhang, S. Liu, Y. Zhou, B. Chang, S. Zhang, H. Fan, B. Yang, Adv. Mater. Interfaces, 2019, 6, 1801653. [106] J. Zhang, Z. Liu, Z. Liu, ACS Appl. Mater. Interfaces, 2016, 8, 9684-9691. [107] J. H. Baek, B. J. Kim, G. S. Han, S. W. Hwang, D. R. Kim, I. S. Cho, H. S. Jung, ACS Appl. Mater. Interfaces, 2017, 9, 1479-1487. [108] J. Zhang, H. Ma, Z. Liu, Appl. Catal. B, 2017, 201, 84-91. [109] C. Wang, J. Tang, X. Zhang, L. Qian, H. Yang, Prog. Nat. Sci. Mater., 2018, 28, 200-204. [110] K. C. Leonard, K. M. Nam, H. C. Lee, S. H. Kang, H. S. Park, A. J. Bard, J. Phys. Chem. C, 2013, 117, 15901-15910. [111] K. M. Nam, E. A. Cheon, W. J. Shin, A. J. Bard, Langmuir, 2015, 31, 10897-10903. [112] D. Wang, P. S. Bassi, H. Qi, X. Zhao, Gurudayal, L. H. Wong, R. Xu, T. Sritharan, Z. Chen, Materials, 2016, 9, 348. [113] Z. Hu, M. Xu, Z. Shen, J. C. Yu, J. Mater. Chem. A, 2015, 3, 14046-14053. [114] D. Jeon, N. Kim, S. Bae, Y. Han, J. Ryu, ACS Appl. Mater. Interfaces, 2018, 10, 8036-8044. [115] S. Prabhu, L. Cindrella, O. J. Kwon, K. Mohanraju, Int. J. Hydrogen Energy, 2017, 42, 29791-29796. [116] Z. Li, Y. Qi, W. Wang, D. Li, Z. Li, Y. Xiao, G. Han, J.-R. Shen, C. Li, Chin. J. Catal., 2019, 40, 486-494. [117] Z. Chen, Q. Huang, B. Huang, F. Zhang, C. Li, Chin. J. Catal., 2019, 40, 38-42. [118] M. Z. Rahman, K. Davey, S.-Z. Qiao, J. Mater. Chem. A, 2018, 6, 1305-1322. [119] J. Fu, J. Yu, C. Jiang, B. Cheng, Adv. Energy Mater., 2018, 8, 1701503. [120] Q. Wang, T. Niu, L. Wang, J. Huang, H. She, Chin. J. Catal., 2018, 39, 613-618. [121] T. J. Meyer, M. V. Sheridan, B. D. Sherman, Chem. Soc. Rev., 2017, 46, 6148-6169. [122] K. L. Materna, R. H. Crabtree, G. W. Brudvig, Chem. Soc. Rev., 2017, 46, 6099-6110. [123] D. Kandi, S. Martha, K. M. Parida, Int. J. Hydrogen Energy, 2017, 42, 9467-9481. [124] C. Gao, J. Wang, H. Xu, Y. Xiong, Chem. Soc. Rev., 2017, 46, 2799-2823. [125] Z. Wang, L. Wang, Sci. China Mater., 2018, 61, 806-821. [126] D. Li, J. Shi, C. Li, Small, 2018, 14, 1704179. [127] S. Sahai, A. Ikram, S. Rai, R. Shrivastav, S. Dass, V. R. Satsangi, Renew. Sustain. Energy Rev., 2017, 68, 19-27. [128] E. A. Gibson, Chem. Soc. Rev., 2017, 46, 6194-6209. [129] Q. Ding, B. Song, P. Xu, S. Jin, Chem, 2016, 1, 699-726. [130] X. Ding, L. Zhang, Y. Wang, A. Liu, Y. Gao, Coord. Chem. Rev., 2018, 357, 130-143. [131] Q. Wang, T. Niu, L. Wang, C. Yan, J. Huang, J. He, H. She, B. Su, Y. Bi, Chem. Eng. J., 2018, 337, 506-514. [132] Q. Wang, J. He, Y. Shi, S. Zhang, T. Niu, H. She, Y. Bi, Z. Lei, Appl. Catal. B, 2017, 214, 158-167. [133] R. Liu, Y. Lin, L.Y. Chou, S. W. Sheehan, W. He, F. Zhang, H. J. Hou, D. Wang, Angew. Chem. Int. Ed., 2011, 50, 499-502. [134] J. A. Seabold, K.-S. Choi, Chem. Mater., 2011, 23, 1105-1112. [135] Q. Liu, Q. Chen, J. Bai, J. Li, J. Li, B. Zhou, J. Solid State Electrochem., 2014, 18, 157-161. [136] J. M. Spurgeon, J. M. Velazquez, M. T. McDowell, Phys. Chem. Chem. Phys., 2014, 16, 3623-3631. [137] X. Fan, B. Gao, T. Wang, X. Huang, H. Gong, H. Xue, H. Guo, L. Song, W. Xia, J. He, Appl. Catal. A, 2016, 528, 52-58. [138] J. Huang, Y. Ding, X. Luo, Y. Feng, J. Catal., 2016, 333, 200-206. [139] W. L. Kwong, C. C. Lee, J. Messinger, J. Phys. Chem. C, 2016, 120, 10941-10950. [140] Z. Xu, X. Li, J. Li, L. Wu, Q. Zeng, Z. Zhou, Appl. Surf. Sci., 2013, 284, 285-290. [141] L. Li, S. Xiao, R. Li, Y. Cao, Y. Chen, Z. Li, G. Li, H. Li, ACS Appl. Energy Mater., 2018, 1, 6871-6880. [142] F. Zhan, W. Liu, W. Li, J. Li, Y. Yang, Y. Li, Q. Chen, Int. J. Hydrogen Energy, 2016, 41, 11925-11932. [143] X. Deng, H. Tüysüz, ACS Catal., 2014, 4, 3701-3714. [144] S. S. Gujral, A. N. Simonov, M. Higashi, X.-Y. Fang, R. Abe, L. Spic-cia, ACS Catal., 2016, 6, 3404-3417. [145] S. Chen, S. Shen, G. Liu, Y. Qi, F. Zhang, C. Li, Angew. Chem. Int. Ed., 2015, 54, 3047-3051. [146] T. Hong, Z. Liu, X. Zheng, J. Zhang, L. Yan, Appl. Catal. B, 2017, 202, 454-459. [147] J. W. Huang, Y. Zhang, Y. Ding, ACS Catal., 2017, 7, 1841-1845. [148] F. Li, C. Xu, X. Wang, Y. Wang, J. Du, L. Sun, Chin. J. Catal., 2018, 39, 446-452. [149] N. Wang, H. Zheng, W. Zhang, R. Cao, Chin. J. Catal., 2018, 39, 228-244. [150] D. W. Shaffer, Y. Xie, J. J. Concepcion, Chem. Soc. Rev., 2017, 46, 6170-6193. [151] J. Lin, B. Ma, M. Chen, Y. Ding, Chin. J. Catal., 2018, 39, 463-471. [152] S.-S. Wang, G.-Y. Yang, Chem. Rev., 2015, 115, 4893-4962. [153] Y. Ji, L. Huang, J. Hu, C. Streb, Y.-F. Song, Energy Environ. Sci., 2015, 8, 776-789. [154] R. H. Crabtree, Chem. Rev., 2015, 115, 127-150. [155] Z. Yu, F. Li, L. Sun, Energy Environ. Sci., 2015, 8, 760-775. [156] B. Zhang, X. Zheng, O. Voznyy, R. Comin, M. Bajdich, M. Gar-cía-Melchor, L. Han, J. Xu, M. Liu, L. Zheng, F. P. García de Arquer, C. T. Dinh, F. Fan, M. Yuan, E. Yassitepe, N. Chen, T. Regier, P. Liu, Y. Li, P. De Luna, A. Janmohamed, H. L. Xin, H. Yang, A. Vojvodic, E. H. Sargent, Science, 2016, 352, 333-337. [157] B. M. Klepser, B. M. Bartlett, J. Am. Chem. Soc., 2014, 136, 1694-1697. [158] X. Hu, X.-J. Zheng, Y. Li, D.-K. Ma, Mater. Lett., 2018, 220, 36-39. [159] H. Tong, Y. Jiang, Q. Zhang, J. Li, W. Jiang, D. Zhang, N. Li, L. Xia, ChemSusChem, 2017, 10, 3268-3275. [160] Y. Zhang, S. He, W. Guo, Y. Hu, J. Huang, J. R. Mulcahy, W. D. Wei, Chem. Rev., 2018, 118, 2927-2954. [161] Q. Pan, C. Zhang, Y. Xiong, Q. Mi, D. Li, L. Zou, Q. Huang, Z. Zou, H. Yang, ACS Sustain. Chem. Eng., 2018, 6, 6378-6387. [162] T. G. U. Ghobadi, A. Ghobadi, E. Ozbay, F. Karadas, ChemPhoto-Chem, 2018, 2, 161-182. [163] L. Wang, H. Hu, N. T. Nguyen, Y. Zhang, P. Schmuki, Y. Bi, Nano Energy, 2017, 35, 171-178. [164] G. Liu, K. Du, J. Xu, G. Chen, M. Gu, C. Yang, K. Wang, H. Jakobsen, J. Mater. Chem. A, 2017, 5, 4233-4253. [165] D. Hu, P. Diao, D. Xu, Q. Wu, Nano Rese., 2016, 9, 1735-1751. [166] P. Zhang, T. Wang, J. Gong, Adv. Mater., 2015, 27, 5328-5342. [167] Q. Wang, J. He, Y. Shi, S. Zhang, T. Niu, H. She, Y. Bi, Chem. Eng. J., 2017, 326, 411-418. [168] P.-Y. Kuang, P.-X. Zheng, Z.-Q. Liu, J.-L. Lei, H. Wu, N. Li, T.-Y. Ma, Small, 2016, 12, 6735-6744. [169] R. Solarska, A. Królikowska, J. Augustyński, Angew. Chem. Int. Ed., 2010, 49, 7980-7983. [170] K. H. Ng, L. Jeffery Minggu, N. A. Jaafar, K. Arifin, M. B. Kassim, Sol. Energy Mater. Sol. Cells, 2017, 172, 361-367. [171] F. Xu, Y. Yao, D. Bai, R. Xu, J. Mei, D. Wu, Z. Gao, K. Jiang, J. Colloid Interface Sci., 2015, 458, 194-199. [172] Z. Liu, J. Wu, J. Zhang, Int. J. Hydrogen Energy, 2016, 41, 20529-20535. |
[1] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
[2] | 蔡铭洁, 刘艳萍, 董珂欣, 陈晓波, 李世杰. 漂浮型Bi2WO6/C3N4/碳布S型异质结光催化材料用于高效净化水体环境[J]. 催化学报, 2023, 52(9): 239-251. |
[3] | 孙丽娟, 于晓慧, 唐丽永, 王伟康, 刘芹芹. 构建K3PW12O40/CdS核壳S型异质结实现同步太阳能光催化分解水和选择性苯甲醇氧化反应[J]. 催化学报, 2023, 52(9): 164-175. |
[4] | 江梓聪, 程蓓, 张留洋, 张振翼, 别传彪. 氧化锌基梯型异质结光催化剂[J]. 催化学报, 2023, 52(9): 32-49. |
[5] | 韩璟怡, 管景奇. 通过表面镧改性和体相锰掺杂协助钴尖晶石酸性下析氧[J]. 催化学报, 2023, 51(8): 1-4. |
[6] | 赵磊, 张震, 朱昭昭, 李平波, 蒋金霞, 杨婷婷, 熊佩, 安旭光, 牛晓滨, 齐学强, 陈俊松, 吴睿. 缺陷氮掺杂碳耦合Co-N5单原子位点用于高效锌-空气电池[J]. 催化学报, 2023, 51(8): 216-224. |
[7] | 刘博文, 蔡家杰, 张建军, 谭海燕, 程蓓, 许景三. MOF/CdS梯型光催化剂同时进行苯甲醇氧化和析氢反应及其机理研究[J]. 催化学报, 2023, 51(8): 204-215. |
[8] | 乔蔚, 于立策, 常进法, 杨甫林, 冯立纲. MoSe2纳米片耦合Pt纳米颗粒用于高效双功能催化甲醇辅助水电解制氢[J]. 催化学报, 2023, 51(8): 113-123. |
[9] | 宋明明, 宋相海, 刘鑫, 周伟强, 霍鹏伟. ZnIn2S4/MOF-808微球结构S型异质结光催化剂的制备及其光还原CO2性能研究[J]. 催化学报, 2023, 51(8): 180-192. |
[10] | 李晓娟, 祁明雨, 李婧宇, 谭昌龙, 唐紫蓉, 徐艺军. PdS修饰的ZnIn2S4复合材料用于可见光催化硫醇偶联制备二硫化物同时产氢[J]. 催化学报, 2023, 51(8): 55-65. |
[11] | 邵秀丽, 李可, 李静萍, 程强, 王国宏, 王楷. 揭示NiS@Ta2O5纳米纤维中梯型电荷转移路径及光催化CO2转化性能[J]. 催化学报, 2023, 51(8): 193-203. |
[12] | 王潇涵, 田汉, 余旭, 陈立松, 崔香枝, 施剑林. 非晶相电催化剂在电解水领域的研究进展[J]. 催化学报, 2023, 51(8): 5-48. |
[13] | 李世杰, 王春春, 董珂欣, 张鹏, 陈晓波, 李鑫. 新型MIL-101(Fe)/BiOBr S型异质催化剂用于高效光催化降解抗生素和还原六价铬: 光催化性能分析和光催化机理研究[J]. 催化学报, 2023, 51(8): 101-112. |
[14] | 孙利娟, 王伟康, 路平, 刘芹芹, 王乐乐, 唐华. 纳米高熵合金实现光催化剂肖特基势垒的调控用于光催化制氢与苯甲醇氧化耦合反应[J]. 催化学报, 2023, 51(8): 90-100. |
[15] | 林敏, 罗美兰, 柳勇志, 沈锦妮, 龙金林, 张子重. 一维S型异质结W18O49-SiC海胆状复合催化剂增强光催化CO2还原[J]. 催化学报, 2023, 50(7): 239-248. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||