催化学报 ›› 2019, Vol. 40 ›› Issue (11): 1673-1678.DOI: 10.1016/S1872-2067(19)63327-9

• 论文 • 上一篇    下一篇

气相催化水氧化制备H2O2的展望

Mayfair C. Kung, Harold H. Kung   

  1. 西北大学化学与生物工程系, 埃文斯顿 60208, 伊利诺斯州, 美国
  • 收稿日期:2019-01-09 修回日期:2019-02-13 出版日期:2019-11-18 发布日期:2019-09-06
  • 通讯作者: Harold H. Kung
  • 基金资助:
    The generous support by Northwestern University through a gift from Dr. Warren Haug is greatly appreciated.

Prospect of vapor phase catalytic H2O2 production by oxidation of water

Mayfair C. Kung, Harold H. Kung   

  1. Chemical and Biological Engineering Department, Northwestern University, Evanston, IL. 60208, United States
  • Received:2019-01-09 Revised:2019-02-13 Online:2019-11-18 Published:2019-09-06
  • Contact: Harold H. Kung
  • Supported by:
    The generous support by Northwestern University through a gift from Dr. Warren Haug is greatly appreciated.

摘要: 通过与有机牺牲还原剂氧化反应耦合,可以实现气相催化水氧化生产过氧化氢.该过程可能是比直接从氢气和氧气合成更安全.基于现有大多数的液相催化反应机理,提出了该耦合反应可行的反应机理,并在此基础上确定了理想的催化剂性能.结果表明,表面吸附氧键是识别理想催化剂的重要参数.热力学可以用来确定有机氧化反应的类型,这种氧化反应可以与水氧化反应耦合,从而使H2O2的生成是热力学有利反应.诸如烯烃环氧化和烷烃选择性氧化等反应不能提供足够的热力学驱动力,而醇氧化为醛和酸则可以.最后,建议进一步研究确定对H2O2分解和有机化合物选择性氧化与H2O氧化耦合反应重要的催化性能,以促进与选择性有机氧化耦合法生产H2O2的发展.

关键词: 催化氧化, 过氧化氢合成, 反应机理, 反应耦合

Abstract: Vapor phase catalytic hydrogen peroxide production by oxidation of water is possible by coupling the reaction with oxidation of an organic sacrificial reductant. It is potentially a safer process than direct synthesis from H2 and O2. Based on mechanistic information available mostly for liquid phase catalytic processes, feasible reaction mechanisms for such coupled reactions are proposed based on which desirable catalyst properties are identified. It is found that the surface-adsorbed oxygen bond is an important parameter for identifying desirable catalysts. Thermodynamics can be used to identify the types of organic oxidation reactions that can couple with water oxidation such that H2O2 formation becomes thermodynamically favorable. Reactions such as epoxidation of alkenes and selective oxidation of alkanes to alcohols cannot provide sufficient thermodynamic driving force, whereas oxidation of alcohols to aldehydes and to acids can. Finally, further research is suggested to identify catalytic properties important for H2O2 decomposition and for coupling selective oxidation of organic compounds to oxidation of H2O in order to facilitate development of H2O2 production coupled with selective organic oxidation.

Key words: Catalytic oxidation, H2O2 production, Reaction mechanism, Reaction coupling