催化学报 ›› 2019, Vol. 40 ›› Issue (s1): 17-25.

• 综述 • 上一篇    下一篇

纳米限域有序组装反应

刘士杰1,2, 张锡奇1, 江雷1,2,3   

  1. 1 中国科学院理化技术研究所, 仿生材料与界面科学重点实验室, 北京 100190;
    2 中国科学院大学未来技术学院, 北京 100049;
    3 北京航空航天大学化学学院, 仿生智能界面科学与技术教育部重点实验室, 北京 100191
  • 出版日期:2019-12-17 发布日期:2019-10-10
  • 通讯作者: 张锡奇, 江雷
  • 基金资助:
    国家自然科学基金(51603211,51673107);国家重点研发计划(2016YFA0200803)).

Nanoconfined Ordered-Assembly Reaction

LIU Shijie1,2, ZHANG Xiqi1, JIANG Lei1,2,3   

  1. 1 CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    2 School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
    3 Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
  • Online:2019-12-17 Published:2019-10-10
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51603211, 51673107) and National Key R&D Program of China (2016YFA0200803).

摘要: 由于纳米限域效应,不同维度下纳米限域化学反应通常表现出优异的反应性能,然而纳米限域增强反应性能的本质机理尚不明确.本文首先给出纳米限域化学反应以及纳米限域预组装反应的观点;然后讨论生物和人工纳米通道中物质的超快输运现象,并介绍量子限域超流体概念.受生命体中程序化组装反应的启发,本文将量子限域超流体概念和前线分子轨道理论相结合,提出有序组装反应的新概念,用于理解高效纳米限域化学反应的本质机理.最后,对纳米限域有序组装反应的未来发展做出展望.

关键词: 纳米通道, 纳米限域, 量子限域超流体, 前线分子轨道理论, 有序组装反应

Abstract: Nanoconfined chemical reactions in different dimensions generally exhibit enhanced performance, as a consequence of nanoconfinement, yet the inherent mechanism of this nanoconfinement-enhanced performance remains elusive. Here, our perspectives on nanoconfined chemical reactions are first provided, followed by nanoconfined pre-assembled reactions. Then, ultrafast mass transport behaviors in biological and artificial nanochannels are discussed and the quantum-confined superfluid concept is introduced. Inspired by the pro-grammed-assembly reaction in living organisms, a new concept of ordered-assembly reaction is proposed through combining quan-tum-confined superfluid with frontier molecular orbital theory, to understand the inherent mechanism of high-performance nanoconfined chemical reactions. Finally, the prospective for future development of the ordered-assembly reaction concept is presented.

Key words: nanochannels, nanoconfinement, quantum-confined superfluid, frontier molecular orbital theory, ordered-assembly reaction