催化学报 ›› 2019, Vol. 40 ›› Issue (s1): 90-97.

• 综述 • 上一篇    下一篇

电极条件下简单化学反应的理论计算模拟

方亚辉1, 刘智攀2   

  1. 1 上海应用技术大学化学与环境工程学院, 上海 201418;
    2 复旦大学化学系, 教育部计算物理科学重点实验室, 上海市分子催化与创新材料重点实验室, 上海 200438
  • 出版日期:2019-12-17 发布日期:2019-10-10
  • 通讯作者: 刘智攀
  • 基金资助:
    科技部纳米科技专项重点研发计划(2018YFA0208600);国家自然科学基金(21573149,21533001,91745201).

Insight into the Important Electrochemical Reactions from First-Principles Calcualtions

FANG Yahui1, LIU Zhipan2   

  1. 1 School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
    2 Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Key Laboratory of Computational Physical Science(Ministry of Education), Fudan University, Shanghai 200433, China
  • Online:2019-12-17 Published:2019-10-10
  • Supported by:
    This work was supported by the National Key Research and Development Program of China (2018YFA0208600), and the National Science Foundation of China (21573149, 21533001, 91745201).

摘要: 电化学理论,经过百多年的发展,从Gouy-Chapman-Stern(GCS)双电层,Tafel动力学,经典的Marcus电子传递理论到今天的量子力学计算,使得固液界面的微观机制认识取得了长足发展.本文总结了最近十几年第一性原理方法对于电化学的理论计算模拟,包括简单的热力学方法,高效率的周期性均匀介质溶剂化模型(DFT/CM-MPB)以及量子力学的分子动力学模拟等.这些理论模型从原子水平阐释了电化学固/液界面的热力学性质,电荷传递的动力学本质以及电流~电势曲线,并列举了理论方法对于重要电化学反应(水解离)的应用实例.理论计算结果已经对于一些经典的固/液界面体系及相应反应机理的理解起到了重要推动作用,然而对于强极化条件下复杂固/液界面体系,还需进一步发展更实用及高效的理论和模拟方法.

关键词: 电化学, 理论计算模拟, 固/液界面, 双电层, Tafel动力学, 电荷转移系数

Abstract: The development of electrochemistry theory dates back more than a century, from the Gouy-Chapman-Stern (GCS) double layer, phenomenological Tafel kinetics to the classical charge transfer Marcus theory and to the First-Principles simulations. The recent years have seen the rapid development in the application of first principles density functional theory (DFT) simulation on the solid/liquid interface. This article reviews the current theoretical methods for electrochemistry modelling, i.e simple thermodynamic method, periodic continuum solvation method (DFT/CM-MPB) and quantum mechanics molecular dynamics (QMMD). These methods have been applied to provide the atomic level insights into the nature of electrochemical double layer, charge transfer and the potential~current curve of electrocatalytic reaction. Despite these progresses, there is plenty of room for the new design and the improvement of theoretical methods for better describing the complex solid/liquid interface and the reaction therein.

Key words: electrochemistry, first principles calculations, solid/liquid interface, double layer, Tafel kinetics, charge transfer coefficient