催化学报 ›› 2019, Vol. 40 ›› Issue (s1): 129-142.
谢顺吉, 王野
出版日期:
2019-12-17
发布日期:
2019-10-10
通讯作者:
王野
基金资助:
XIE Shunji, WANG Ye
Online:
2019-12-17
Published:
2019-10-10
Supported by:
摘要: 选择氧化是一类重要化学反应,在当今化学工业过程中占据极其重要的地位.近年来随着资源供给形势变化、可持续发展和绿色化学等的要求,追求100%高选择性以减少CO2排放、以廉价丰富或可再生资源取代耗竭型资源、以空气/氧气/过氧化氢等取代有机过氧化物氧化剂、以水取代有机溶剂等方面的研究已发展成为选择氧化催化研究领域的主要趋势.甲烷等低碳烷烃选择氧化、丙烯环氧化和苯选择氧化制苯酚是该领域最具挑战性的难题.生物质基化合物分子中特定官能团选择氧化是该领域的新生长方向,引入光催化和电催化构建选择氧化新体系为该领域带来新机遇.本文针对低碳烷烃选择氧化、烯烃环氧化、苯制苯酚和生物质基分子制有机酸等几类重要选择氧化反应,挂一漏万梳理了国内外近年的重要研究进展,探究了影响反应活性/选择性的关键因素,以及与催化活性位和反应机理相关的一些关键催化基础科学问题,分析并展望了催化选择氧化领域涌现的新方法、新材料以及未来发展方向.
谢顺吉, 王野. 催化选择氧化领域近年研究进展、挑战与展望[J]. 催化学报, 2019, 40(s1): 129-142.
XIE Shunji, WANG Ye. Recent Advances, Challenges and Perspectives in Selective Oxidation Catalysis[J]. Chinese Journal of Catalysis, 2019, 40(s1): 129-142.
1 Thayer A M. Chem Eng News, 1992, 70:27 2 Guo Z, Liu B, Zhang Q, Deng W, Wang Y, Yang Y. Chem Soc Rev, 2014, 43:3480 3 Grasselli R K, Burrington J D. Adv Catal, 1981, 30:133 4 Haber J, Witko M. J Catal, 2003, 216:416 5 Sinev M Y. J Catal, 2003, 216:468 6 Guo X, Fang G, Li G, Ma H, Fan H, Yu L, Ma C, Wu X, Deng D, Wei M, Tan D, Si R, Zhang S, Li J, Sun L, Tang Z, Pan X, Bao X. Science, 2014, 344:616 7 Grasselli R K. Top Catal, 2002, 21:79 8 万惠霖. 固体表面物理化学若干研究前沿. 厦门:厦门大学出版社(Wan H, Several Research Frontiers in Physical Chemistry of Solid Surfaces. Xiamen:Xiamen Univ Press), 2006.167 9 Armor J N. J Energy Chem, 2013, 22:21 10 Arndtsen B A, Bergman R G, Mobley T A, Peterson T H. Acc Chem Res, 1995, 28:154 11 Labinger J A, Bercaw J E. Nature, 2002, 417:507 12 Shilov A E, Shul'pin G B. Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes. Kluwer Academic Publishers, Dordrecht, 2000 13 Periana R A, Taube D J, Gamble S, Taube H, Satoh T, Fujii H. Science, 1998, 280:560 14 Díaz-Urrutia C, Ott T. Science, 2019, 363:1326 15 Zhang J, Feng X. Joule, 2018, 2:1396 16 Yuan Q, Deng W, Zhang Q, Wang Y. Adv Synth Catal, 2007, 349:1199 17 Hammond C, Forde M M, Rahim M H A, Thetford A, He Q, Jenkins R L, Dimitratos N, Lopez-Sanchez J A, Dummer N F, Murphy D M, Carley A F, Taylor S H, Willock D J, Stangland E E, Kang J, Hagen H, Kiely C J, Hucthings G J. Angew Chem Int Ed, 2012, 51:5129 18 Ab Rahim M H, Forde M M, Jenkins R L, Hammond C, He Q, Dimitratos N, Lopez-Sanchez J A, Carley A F, Taylor S H, Willock D J, Murphy D M, Kiely C J, Hucthings G J. Angew Chem Int Ed, 2013, 52:1280 19 Agarwal N, Freakley S J, McVicker R U, Althahban S M, Dimitratos N, He Q, Morgan D J, Jenkins R L, Willock D J, Taylor S H, Kiely C J, Hutchings G J. Science, 2017, 358:223 20 Cui X, Li H, Wang Y, Hu Y, Hua L, Li H, Han X, Liu Q, Yang F, He L, Chen X, Li Q, Xiao J, Deng D, Bao X. Chem, 2018, 4:1902 21 Li Y, An D, Zhang Q, Wang Y. J Phys Chem C, 2008, 112:13700 22 Zhang Q, Li Y, An D, Wang Y. Appl Catal A, 2009, 356:103 23 Wang Y, An D L, Zhang Q H. Sci China Chem, 2010, 53:337 24 Groothaert M H, Smeets P J, Jacobs B F, Jacob P A, Schoonheydt R A. J Am Chem Soc, 2005, 127:1394 25 Grundner S, Markovits M A C, Li G, Tromp M, Pidko E A, Hensen E J M, Jentys A, Sanchez-Sanchez M, Lercher J A. Nat Commun, 2015, 6:7546 26 Tomkins P, Ranocchiari M, van Bokhoven J A. Acc Chem Res, 2017, 50:418 27 Sushkevich V L, Palagin D, Ranocchiari M, van Bokhoven J A. Science, 2017, 356:523 28 Snyder B E R, Vanelderen P, Bols M L, Hallaert S D, Böttger L H, Ungur L, Pierloot K, Schoonheydt R A, Sels B F, Solomon E I. Nature, 2016, 536:317 29 Keller G E, Bhasin M M. J Catal, 1982, 73:9 30 Wang P, Zhao G, Wang Y, Lu Y. Sci Adv, 2017, 3:e1603180 31 Luo L, Tang X, Wang W, Wang Y, Sun S, Qi F, Huang W. Sci Rep, 2013, 3:1625 32 Li Z, He L, Wang S, Yi W, Zou S, Xiao L, Fan J. ACS Comb Sci, 2017, 19:15 33 Zhu Q, Wegener S L, Xie C, Uche O, Neurock M, Marks T J. Nat Chem, 2013, 5:104 34 Peter M, Marks T J. J Am Chem Soc, 2015, 137:15234 35 Xiong H, Lin S, Goetze J, Pletcher P, Guo H, Kovarik L, Artyushkova K, Weckhuysen B M, Datye A K. Angew Chem Int Ed, 2017, 56:8986 36 Searles K, Chan K W, Mendes Burak J A, Zemlyanov D, Safonova, Copéret C. J Am Chem Soc, 2018, 140:11674 37 Sun G, Zhao Z J, Mu R, Zha S, Li L, Chen S, Zang K, Luo J, Li Z, Purdy S C, Kropf A J, Miller J T, Zeng L, Gong J. Nat Commun, 2018, 9, 4454 38 Zhang J, Liu X, Blume R, Zhang A, Schlögl, Su D S. Science, 2008, 322:73 39 Frank B, Zhang J, Blume R, Schlögl, Su D S. Angew Chem Int Ed, 2009, 48:6913 40 Grant J T, Carrero C A, Goeltl F, Venegas J, Muller P, Burt S P, Specht S E, McDermott W P, Chieregato A, Hermans I. Science, 2016, 354:1570 41 Shi L, Wang D, Song W, Shao D, Zhang W P, Lu A H. ChemCatChem, 2017, 9:1788 42 Shi L, Wang D, Lu A H. Chin J Catal, 2018, 39:908 43 Love A M, Thomas B, Specht S E, Hanrahan M P, Venegas J M, Burt S P, Grant J T, Cendejas M C, McDermott W P, Rossini A J, Hermans I. J Am Chem Soc, 2019, 141:182 44 Tian J, Tan, J, Xu M, Zhang Z, Wan S, Wang S, Lin J, Wang Y. Sci Adv, 2019, 5:eaav8063 45 Nowicka E, Reece C, Althahban S M, Mohammed K M H, Kondrat S A, Morgan D J, He Q, Willock D J, Golunski S, Kiely C J, Hutchings G J. ACS Catal, 2018, 8:3454 46 Wang S B, Zhu Z H. Energy Fuels, 2004, 18:1126 47 Ansari M B, Park S E. Energy Environ Sci, 2012, 5:9419 48 Gomez E, Kattel S, Yan B, Yao S, Liu P, Chen J G G. Nat Commun, 2018, 9:1398 49 Cavani F, Ballarini N. In:Modern Heterogeneous Oxidation Catalysis:Design, Reactions and Characterization, Mizuno Ned., ed. Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim. 2009.289 50 Shi L, Zhu X Q, Su Y, Weng W Z, Feng H, Yi X D, Liu Z X, Wan H L. J Catal, 2013, 307:316 51 Liu Q, Li J, Zhao Z, Gao M, Kong L, Liu J, Wei Y. J Catal, 2016, 344:38 52 Olah G A, Gupta B, Farina M, Felberg J D, Ip W M, Husain A, Karpeles R, Lantmertsma H, Melhotra A K, Trivedi N J. J Am Chem Soc, 1985, 107:7097 53 McFarland E, Science, 2012, 338:340 54 Li F, Yuan G. Angew Chem Int Ed, 2006, 45:6541 55 Batamack P T D, Mathew T, Prakash G K S. J Am Chem Soc, 2017, 139:18078 56 Podkolzin S G, Stangland E E, Jones M E, Peringer E, Lercher J A. J Am Chem Soc, 2007, 129:2569 57 You Q, Liu Z, Li W, Zhou X. J Nat Gas Chem, 2009, 18:306 58 Lin R, Ding Y, Gong L, Dong W, Wang J, Zhang T. J Catal, 2010, 272:65 59 He J, Xu T, Wang Z, Zhang Q, Deng W, Wang Y. Angew Chem Int Ed, 2012, 51:2438 60 Xu T, Zhang Q, Song H, Wang Y. J Catal, 2012, 295:232 61 Paunovi? V, Zichittella G, Moser M, Amrute A P, Pérez-Ramírez J. Nat Chem, 2016, 8:803 62 Paunovi? V, Zichittella G, Verel R, Amrute A P, Pérez-Ramírez J. Angew Chem Int Ed, 2016, 55:15619 63 Ding K, Metiu H, Stucky G D. ChemCatChem, 2013, 5:1906 64 Yu F, Wu X, Zhang Q, Wang Y. Chin J Catal, 2014, 35:1260 65 Xie Q, Zhang H, Kang J, Cheng J, Zhang Q, Wang Y. ACS Catal, 2018, 8:4902 66 Tullo A. Chem Eng News, 2004, 82(49):15 67 Wang X, Zhang Q, Guo Q, Lou Y, Yang L, Wang Y. Chem Commun, 2004, 1396 68 Wang X, Zhang Q, Yang S, Wang Y. J Phys Chem B, 2005, 109:23500 69 Yang S, Zhu W, Zhang Q, Wang Y. J Catal, 2008, 254:251 70 Lei Y, Mehmood F, Lee S, Greeley J, Lee B, Seifert S, Winans R E, Elam J W, Meyer R J, Redfern P C, Teschner D, Schlögl R, Pellin M J, Curtiss L A, Vajda S. Science, 2010, 328:224 71 Hayashi T, Tanaka K, Haruta M. J Catal, 1998, 178:566 72 Sinha A K, Seelan S, Tsubota S, Haruta M. Angew Chem Int Ed, 2004, 43:1546 73 Nijhuis T A, Makkee M, Moulijn J A, Weckhusen B M. Ind Eng Chem Res, 2006, 45:3447 74 Chowdhury B, Bravo-Suárez J J, Daté M, Tsubota S, Haruta M. Angew Chem Int Ed, 2006, 45:412 75 Lee S, Molina L M, López M, Alonso J A, Hammer B, Lee B, Seifert S, Winans R E, Elam J W, Pellin M J, Vajda S. Angew Chem Int Ed, 2009, 48:1467 76 Ojeda M, Iglesia E. Chem Commun, 2009, 352 77 Huang J, Akita T, Faye J, Fujitani T, Takei T, Haruta M. Angew Chem Int Ed, 2009, 48:7862 78 Lu J, Luo M, Lei H, Bao X, Li C. J Catal, 2002, 211:552 79 Vaughan O P H, Kyriakou G, Macleod N, Tikov M, Lambert R M. J Catal, 2005, 236:401 80 Chu H, Yang L, Zhang Q, Wang Y. J Catal, 2006, 241:225 81 Zhu W, Zhang Q, Wang Y. J Phys Chem C, 2008, 112:7731 82 He J, Zhai Q, Zhang Q, Deng W, Wang Y. J Catal, 2013, 299:53 83 Yang L, He J, Zhang Q, Wang Y. J Catal, 2010, 276:76 84 Long W, Zhai Q, He J, Zhang Q, Deng W, Wang Y. ChemPlusChem, 2012, 77:27 85 Yang X, Kattel S, Xiong K, Mudiyanselage K, Rykov S, Senanayake S D, Rodriguez J A, Liu P, Stacchiola D J, Chen J G. Angew Chem Int Ed, 2015, 54:11946 86 Marimuthu A, Zhang J, Linic S. Science, 2013, 339:1590 87 Panov G I. Cattech, 2010, 4:18 88 Notté P P. Top Catal, 2000, 13:387 89 Yang J H, Sun G, Gao Y, Zhao H, Tang P, Tan J, Lu A H, Ma D. Energy Environ Sci, 2013, 6:793 90 Wen G, Wu S, Li B, Dai C, Su D S. Angew Chem Int Ed, 2015, 54:4105 91 Deng D, Chen X, Yu L, Wu X, Liu Q, Liu Y, Yang H, Tian H, Hu Y, Du P, Si R, Wang J, Cui X, Li H, Xiao J, Xu T, Deng J, Yang F, Duchesne P N, Zhang P, Zhou J, Sun L, Li J, Pan X, Bao X. Sci Adv, 2015, 1:e1500462 92 Zhou Y, Ma Z, Tang J, Yan N, Du Y, Xi S, Wang K, Zhang W, Wen H, Wang J. Nat Commun, 2018, 9:2931 93 Puértolas B, Hill A K, García T, Solsona B, Torrente-Murciano L. Catal Today, 2015, 248:115 94 Laufer W, Hoelderich W F. Chem Commun, 2002, 1684 95 Niwa S I, Eswaramoorthy M, Nair J, Raj A, Itoh N, Shoji H, Namba T, Mizukami, F. Science, 2002, 295:105 96 Shibata Y, Hamada R, Ueda T, Ichihashi Y, Nishiyama S, Tsuruya S. Ind Eng Chem Res, 2005, 44:8765 97 Kubacka A, Wang Z, Sulikowski B, Cortes Corberán V. J Catal, 2007, 250:184 98 Bal R, Tada M, Sasaki T, Iwasawa Y. Angew Chem Int Ed, 2006, 45:448 99 Li S, Deng W, Wang S, Wang P, An D, Li Y, Zhang Q, Wang Y. ChemSusChem, 2018, 11:1995 100 Asano T, Tamura M, Nakagawa Y, Tomishige K. ACS Sustainable Chem Eng, 2016, 4:6253 101 Pacheco J J, Davis M E. Proc Natl Acad Sci U S A, 2014, 111:8363 102 Wang Y, Deng W, Wang B, Zhang Q, Wan X, Tang Z, Wang Y, Zhu C, Cao Z, Wang G, Wan, H. Nat Commun, 2013, 4:2141 103 Zhang J, Liu X, Sun M, Ma X, Han Y. ACS Catal, 2012, 2:1698 104 Xu G, Wang A, Pang J, Zhao X, Xu J, Lei N, Wang J, Zheng M, Yin J, Zhang T. ChemSusChem, 207, 10:1390 105 Ishida T, Kinoshita N, Okatsu H, Akita T, Takei T, Haruta M. Angew Chem Int Ed, 2008, 47:9265 106 An D, Ye A, Deng W, Zhang Q, Wang Y. Chem Eur J, 2012, 18:2938 107 Lee J, Saha B, Vlachos D G. Green Chem, 2016, 18:3815 108 Li X, Wu D, Lu T, Yi G, Su H, Zhang Y. Angew Chem Int Ed, 2014, 53:4200 109 Larson R T, Samant A, Chen J, Lee W, Bohn M A, Ohlmann D M, Zuend S J, Toste F D. J Am Chem Soc, 2017, 139:14001 110 Lu R, Lu F, Chen J, Yu W, Huang Q, Zhang J, Xu J. Angew Chem Int Ed, 2016, 55:249 111 Wan X, Zhou C, Chen J, Deng W, Zhang Q, Yang Y, Wang Y. ACS Catal, 2014, 4:2175 112 Zhou C, Deng W, Wan X, Zhang Q, Yang Y, Wang Y. ChemCatChem, 2015, 7:2853 113 Kwon Y, Kim T Y, Kwon G, Yi J, Lee H. J Am Chem Soc, 2017, 139:17694 114 Shan J, Li M, Allard L F, Lee S, Flytzani-Stephanopoulos M. Nature, 2017, 551:605 115 Cao L, Liu W, Luo Q, Yin R, Wang B, Weissenrieder J, Soldemo M, Yan H, Lin Y, Sun Z, Ma C, Zhang W, Chen S, Wang H, Guan Q, Yao T, Wei S, Yang J, Lu J. Nature, 2019, 565:631 116 Tian S, Fu Q, Chen W, Feng Q, Chen Z, Zhang J, Cheong W, Yu R, Gu L, Dong J, Luo J, Chen C, Peng Q, Draxl C, Wang D, Li Y. Nat Commun, 2018, 9:2353 117 Wang H, Gu X, Zheng X, Pan H, Zhu J, Chen S, Cao L, Li W, Lu J. Sci Adv, 2019, 5:eaat6413 118 Xin P, Li J, Xiong Y, Wu X, Dong J, Chen W, Wang Y, Gu L, Luo J, Rong H, Chen C, Peng Q, Wang D, Li Y. Angew Chem Int Ed, 2018, 57:4642 119 Xie J, Jin R, Li A, Bi Y, Ruan Q, Deng Y, Zhang Y, Yao S, Sankar G, Ma D, Tang J. Nat Catal, 2018, 1:889 120 Xie S, Shen Z, Deng J, Guo P, Zhang Q, Zhang H, Zhang H, Ma C, Jiang Z, Cheng J, Deng D, Wang Y. Nat Commun, 2018, 9:1181 121 Cha H G, Choi K S. Nat Chem, 2015, 7:328 |
[1] | Abhishek R. Varma, Bhushan S. Shrirame, Sunil K. Maity, Deepti Agrawal, Naglis Malys, Leonardo Rios-Solis, Gopalakrishnan Kumar, Vinod Kumar. C4二醇的发酵生产及其化学催化升级为高价值化学品的研究进展[J]. 催化学报, 2023, 52(9): 99-126. |
[2] | 赵梦, 徐晶, 宋术岩, 张洪杰. 核壳/蛋黄壳纳米反应器用于串联催化[J]. 催化学报, 2023, 50(7): 83-108. |
[3] | 刘润泽, 邵雪, 王畅, 戴卫理, 关乃佳. 甲醇制烃反应机理: 基础及应用研究[J]. 催化学报, 2023, 47(4): 67-92. |
[4] | 焦龙, 江海龙. 金属有机框架材料在催化领域的研究现状与展望[J]. 催化学报, 2023, 45(2): 1-5. |
[5] | 聂超, 龙向东, 刘琪, 王嘉, 展飞, 赵泽伦, 李炯, 席永杰, 李福伟. 原子分散Ru-P-Ru催化剂的制备及其在多类加氢中的高效应用[J]. 催化学报, 2023, 45(2): 107-119. |
[6] | 孙万军, 朱佳玉, 张美玉, 孟翔宇, 陈梦雪, 冯钰, 陈新龙, 丁勇. 钴基非均相催化剂在光催化水分解、二氧化碳还原和氮还原的研究进展与展望[J]. 催化学报, 2022, 43(9): 2273-2300. |
[7] | 翁雪霏, 杨双莉, 丁丁, 陈明树, 万惠霖. 宽波段原位红外吸收光谱在Pd/SiO2和Cu/SiO2催化剂上CO氧化中的应用[J]. 催化学报, 2022, 43(8): 2001-2009. |
[8] | 蒋亚飞, 刘锦程, 许聪俏, 李隽, 肖海. 打破合成氨反应中线性标度关系的碗型活性位点设计: 来自LaRuSi及其同构电子化物的启示[J]. 催化学报, 2022, 43(8): 2183-2192. |
[9] | 王春鹏, 王哲, 毛善俊, 陈志荣, 王勇. 多相催化剂活性位点的配位环境及其对催化性能的影响[J]. 催化学报, 2022, 43(4): 928-955. |
[10] | 陈辉, 张博, 梁宵, 邹晓新. 轻元素调控的贵金属催化剂在能源相关领域的应用[J]. 催化学报, 2022, 43(3): 611-635. |
[11] | 张涛, 韩晓驰, Nhat Truong Nguyen, 杨磊, 周雪梅. 二氧化钛基光催化剂用于二氧化碳还原和太阳燃料的生产[J]. 催化学报, 2022, 43(10): 2500-2529. |
[12] | 邓长顺, 崔韵, 陈俊超, 陈腾, 郭学锋, 季伟捷, 彭路明, 丁维平. 烷基膦酸键合的纳米氧化物上甲苯选择氧化制苯甲醛的类酶机理[J]. 催化学报, 2021, 42(9): 1509-1518. |
[13] | 雷琦锋, 王畅, 戴卫理, 武光军, 关乃佳, Michael Hunger, 李兰冬. 双功能TiSn-Beta分子筛限域的串联Lewis酸催化烯烃生成1,2-二醇[J]. 催化学报, 2021, 42(7): 1176-1184. |
[14] | 刘晓玲, 陈磊, 许红中, 蒋师, 周瑜, 王军. 直接合成Beta沸石封装Pt纳米粒子用于5-羟甲基糠醛合成2,5-呋喃二甲酸[J]. 催化学报, 2021, 42(6): 994-1003. |
[15] | 刘晓艳, 蓝国钧, 李振清, 钱丽华, 刘健, 李瑛. 用于生物质水相加氢多相负载型金属催化剂的稳定策略[J]. 催化学报, 2021, 42(5): 694-709. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||