催化学报 ›› 2019, Vol. 40 ›› Issue (s1): 143-148.

• 综述 • 上一篇    下一篇

基于光合作用的生物分子马达与光系统II的共组装

贾怡, 许有前, 冯熙云, 李悦, 李广乐, 李峻柏   

  1. 中国科学院化学研究所, 北京 100190
  • 出版日期:2019-12-17 发布日期:2019-10-10
  • 通讯作者: 李峻柏
  • 基金资助:
    国家自然科学基金(21433010,21872151,21320102004).

Co-assembly of Molecular Motors ATP synthase and Photosystem II based Photosynthesis

JIA Yi, XU Youqian, FENG Xiyun, LI Yue, LI Guangle, LI Junbai   

  1. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Online:2019-12-17 Published:2019-10-10
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (21433010, 21872151, 21320102004).

摘要: 近年来分子组装技术已成为化学、物理、生物和材料等交叉学科的前沿.生物分子马达是存在于几乎所有生物系统中的天然分子机器.这些生物分子机器在细胞生命活动中参与胞内运输、能量转换和肌肉收缩等一系列重要的生命过程,起着举足轻重的作用.旋转分子马达ATP合酶是目前研究最多的生物分子机器之一.开展ATP合酶的体外重组,不仅有助于理解其在生物过程中的工作机制,而且也有助于推动生物分子马达基生物传感以及合成分子机器的发展.本综述将主要介绍本课题组近期如何设计和构建基于ATP合酶的活性仿生体系的研究进展.受植物中光合磷酸化作用的启发,我们在早期的ATP合酶与层层组装的类细胞结构体共组装的基础上,将光系统Ⅱ(PSⅡ)引入组装体中,构筑了一系列具有光响应功能的ATP合成体系,成功模拟了自然界中光合作用光能与生物能的转化过程.进一步,在天然叶绿体中引入功能组分,制备了人工杂化叶绿体,显著提高了杂化体系的光磷酸化效率.这些复合组装体既成功地模拟了自然界中光合作用的化学反应过程,也为提升光能的有效利用提供了新途径.

关键词: 生物分子机器, ATP合酶, 光系统II, 光酸分子, 量子点, 层层组装, 微球, 多层膜

Abstract: Molecular assembly is an important frontier research in chemistry, physics, biology and material. Biomolecular motors are natural molecular machines that exist in nearly all the biological systems. These biomolecular motors play crucial roles in life activities and participate in a series of important life activities such as intracellular transport, energy transfer and muscle contraction and so on. Rotating molecular motor ATP synthase is one of the most studied biomolecular machines. The recombination of ATP synthase in vitro not only helps to better understand its working mechanism in biological processes, but also promotes the development of biomolecular motor-based devices and synthetic molecular motors. In this paper, we mainly introduce our latest progress on the design and construction of ATP synthase-based biomimetic system. Inspired by photophosphorylation in plants, we fabricated a series of light-responsive ATP synthesis systems by co-assembling ATP synthase and photosystem Ⅱ (PSⅡ) within layer-by-layer assembled cell-like structures. These systems effectively simulated the transformation process from light energy to biological energy in natural photosynthesis. Besides, we also constructed artificial hybrid chloroplasts by introducing functional components into natural chloroplasts. Compared to natural chloroplasts, these hybrid chloroplasts showed remarkable improvement of photophosphorylation efficiency for ATP synthesis. These composite assemblies well simulate the chemical reaction process of photosynthesis in nature, and provide a new way for the effective utilization of light.

Key words: biomolecular machine, ATP synthase, photosystem II, photoacid generator, quantum dot, Layer-by-Layer, microsphere, multilayer