催化学报 ›› 2019, Vol. 40 ›› Issue (s1): 158-164.

• 综述 • 上一篇    下一篇

原位条件下理论模拟催化过程的挑战

陈征, 徐昕   

  1. 复旦大学化学系, 分子催化与功能材料重点实验室, 计算物质科学教育部重点实验室, 上海 200433
  • 出版日期:2019-12-17 发布日期:2019-10-10
  • 通讯作者: 徐昕
  • 基金资助:
    国家自然科学基金(21688102);国家重点基础研究发展计划(2018YFA0208600).

Challenges for Theoretical Modelling of Heterogeneous Catalysis under Operando Conditions

CHEN Zheng, XU Xin   

  1. Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
  • Online:2019-12-17 Published:2019-10-10
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (21688102), and the National Basic Research Program of China (2018YFA0208600).

摘要: 从分子尺度到材料尺度理解催化,依赖于表面表征技术和理论模拟的结合.近年来,原位及工况条件下的表面表征新技术不停涌现、并日益发展成熟,这迫切需要相匹配的理论模拟的协同发展.为了实现原位条件下理论模拟催化过程,相关的理论方法近年来得到较快的发展.本文将简要综述这些理论方法,以及他们应用于多相催化研究的进展和挑战.其中,微观反应动力学可以有效地关联(各种方法得到的)微观性质和催化剂的宏观性能,指认控制催化性能的关键因素,并可由此指导催化剂的改进和理性设计.然而,当前常用的微观反应动力学方法往往不能兼顾精度和效率.最近,通过拓展唯象动力学我们发展了能兼顾精度和效率、原位模拟多相催化过程的动力学新方法XPK.该动力学方法上的进步,将促进原位条件下理论模拟催化过程的实现和基于计算的催化剂理性设计的发展.

关键词: 微观反应动力学, 拓展的唯象动力学, 工况条件, 多相催化, 理论模拟

Abstract: Understanding catalysis from the molecular scale to the materials scale rely on the combined effort of the experimental characterization and theoretical modelling. Currently, there is a significant development for the in-situ and in particular operando experimental techniques that calls for the simultaneous development of methodologies for theoretical modelling. In fact, several promising methods have been developed and applied in the theoretical modelling of heterogeneous catalysis under the operando conditions. Here we provide a brief overview of these methods addressing their advances as well as the challenges. In particular, the microkintics is required to bridge the microscopic information and the macroscopic properties, which is the most important to the catalyst rational design. However, the accurate and efficient microkinetic method is still lacking. Recently, we propose a method, namely XPK, to extend the phenomenological kinetics for the accurate and efficient microkinetic modeling of heterogeneous catalysis. The advance of such methods will promote the development of the predictive theoretical modelling under operando conditions and will be beneficial to the computation-based rational design of catalysts.

Key words: microkinetics, extended phenomenological kinetics, operando, heterogeneous catalysis, theoretical modelling