催化学报 ›› 2019, Vol. 40 ›› Issue (s1): 227-234.

• 综述 • 上一篇    

基于分子水氧化催化剂光电分解水的研究进展

朱勇1, 李斐1, 孙立成1,2   

  1. 1 大连理工大学精细化工国家重点实验室, 辽宁大连 116024, 中国;
    2 瑞典皇家工学院化学系, 斯德哥尔摩 10044, 瑞典
  • 出版日期:2019-12-17 发布日期:2019-10-10
  • 通讯作者: 李斐
  • 基金资助:
    国家自然科学基金(21872016).

Recent Progress on Photoelectrochemical Water Splitting Based on Molecular Water Oxidation Catalysts

ZHU Yong1, LI Fei1, SUN Licheng1,2   

  1. 1 State-Key Laboratory of Fine Chemical Industry, Dalian University of Technology, Dalian 116024, Liaoning, China;
    2 Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm 10044
  • Online:2019-12-17 Published:2019-10-10
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (21872016).

摘要: 模拟光合作用将水分解为氢气和氧气是制备太阳能燃料的潜在手段,而水氧化反应是全分解水反应中最具挑战的步骤.作为光合作用体系Ⅱ释氧活性中心的功能模型配合物,分子水氧化催化剂的出现为解决这一难题提供了更多方案.尽管近年来围绕分子水氧化催化剂的研究取得了巨大的进展,但是构建基于分子催化剂的光解水器件仍然极具挑战.基于以上背景,本文系统地综述了国内外围绕分子水氧化催化剂在电解水和光电分解水器件的构筑方面所取得的最新研究进展,总结了构建相关杂化电极和光电极的策略与原则.这些成果表明,分子工程是建立高效人工光合作用体系至关重要的手段.

关键词: 人工光合作用, 水分解, 分子水氧化催化剂, 电催化, 光阳极, 染料敏化

Abstract: Solar water splitting into hydrogen and oxygen has been considered as a promising method for production of solar fuel. A key challenge in overall water splitting is the catalytic water oxidation. And the emergence of molecular water oxidation catalysts (WOCs) has provided an opportunity to mimic the function of the oxygen-evolving complex (OEC) of photosystem Ⅱ in nature and an alternative way for artificial photosynthesis. Despite progress made on molecular approaches to solar energy conversion, construction of molecularly-based artificial photosynthetic devices that enable simultaneous oxygen and hydrogen evolution remains a significant challenge. This paper reviews recent progress in electrochemical and photoelectrochemical water splitting based on molecular WOCs. Strategies and principles for hybrid anodes and photoanodes design were summarized. And these results show great promise for improving the efficiency of artificial photosynthesis by taking advantage of molecular engineering.

Key words: artificial photosynthesis, water splitting, molecular water oxidation catalyst, nelectrocatalysis, photoanode, dye-sensitized