催化学报 ›› 2020, Vol. 41 ›› Issue (3): 375-389.DOI: 10.1016/S1872-2067(19)63492-3

• 综述 • 上一篇    下一篇

褐煤直接液化技术研究进展

林凯a, 赵晨a,b   

  1. a 华东师范大学化学与分子工程学院, 上海市绿色化学与化工过程绿色化重点实验室, 上海 200062;
    b 华东师范大学崇明生态研究院, 上海 200062
  • 收稿日期:2019-06-02 修回日期:2019-08-02 出版日期:2020-03-18 发布日期:2019-11-19
  • 通讯作者: 赵晨
  • 基金资助:
    国家重点研发计划(2016YFB0701100);国家自然科学基金(21573075);华师大崇明生态研究院计划(ECNU-IEC-201902);国家青年千人计划的资助。

Direct liquefaction techniques on lignite coal: A review

Arif Alia, Chen Zhaoa,b   

  1. a Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China;
    b Institute of Eco-Chongming, East China Normal University, Shanghai 200062, China
  • Received:2019-06-02 Revised:2019-08-02 Online:2020-03-18 Published:2019-11-19
  • Supported by:
    This work was supported by the National Key Research and Development Program of China (2016YFB0701100), the National Natural Science Foundation of China (21573075), Institute of Eco-Chongming (ECNU-IEC-201902) and the Recruitment Program of Global Young Experts in China.

摘要: 褐煤是一个具有复杂结构的低等级煤炭,具有高水分、低发热值和低灰量.此外,褐煤是含有多种杂质的多孔材料,低分子量的有机化合物之间通过氢键结合.各种形式的褐煤含有水分灰硫、硫酸盐硫、黄铁矿硫和挥发物等杂质,现存在多种预处理方法,如10%盐酸预处理,HCl-HF预处理,氧化预处理、溶剂肿胀、溶剂萃取、微波处理、硝酸氧化、微生物脱硫等.
褐煤直接液化可以通过加氢裂化,氧化裂解和烷醇分解反应从低级褐煤中产生各种产物.在催化加氢裂化中,铁基催化剂表现出最小活化且非常高效,而四氢化萘作为适当氢供体溶剂.此外,神华II技术采用悬浮床反应器和铁基催化剂,具有较高的褐煤液化能力.此外,在通过降解、水解、脱硫、脱氮、脱汞和氢化直接液化褐煤的过程中检测到各种有用的产物.液化产物可以分成不同的组分类别,例如芳环产物(前沥青质,沥青质和油)、氧化产物、环状产物和具有烃的烷醇分解产物.液化过程中涉及主要机制包括氧化,自由基形成,碳阳离子形成和烷醇分解.在氢和催化剂存在下褐煤的裂解通常遵循自由基机制褐煤液化的主要产物是单环产物,包括苯酚、甲苯、对伞花烃等环状产物.此外,氧化机理通常产生更多的氧化产物如羧酸等.直接煤液化工艺如IGOR工艺在固定床反应器中运行在290~330℃,容量为200t/d,而神华的DCL工艺在悬浮床反应器中使用5%~7%氢气转化92%煤.工业生产过程中使用的循环溶剂是200多种化合物的混合物,包括蜡,环烷烃,茚类,芘类和芳香族化合物等.然而,由于环数减少,一些芳香族化合物(联苯)在455℃的加氢处理过程中发生开环反应.为了解决这个问题,可使用在萘、菲、蒽作为氢供体溶剂中含有环烷环的芳族化合物来促进液化.
本综述涵盖了各种褐煤和有效铁基催化剂及各种液化产物,尤其涵盖有希望的催化剂,并详细阐明所形成的化合物与裂解反应之间的相关性,且展示典型机理方案,但褐煤和生物质的共液化机制尚未完全阐明,因此需要进一步研究.本文有助于人们开发出更有效的褐煤(低级煤)液化过程催化体系.

关键词: 直接液化, 催化体系, 液化机理, 褐煤, 铁基催化剂

Abstract: With the pressure owing to fossil oil shortages, direct liquefaction is attracting significant attention as a highly efficient and low-cost technique for lignite-to-fuel conversion. In this review, the diverse catalytic systems and mechanisms involved in lignite liquefaction are reviewed. The top five global technologies include IGOR (Germany), HTI (the USA), FFI (Russia), NEDOL (Japan), and Shenhua (China), which have already been applied in industrial scales. Among the five technologies, Shenhua (China) outputs as high as 3000 t/d using a suspended bed reactor, iron-based catalyst, and rehydrogenated recycled solvents (paraffin, aromatics, etc.). The conversion of lignite is quite difficult due to the presence of ionic bond and non-covalent interactions, such as hydrogen bonding; thus, it is well recognized that the catalytic liquefaction under relatively mild conditions is more feasible than non-catalytic liquefaction. Iron-based catalysts can efficiently facilitate the lignite liquefaction and promote the lignite cracking aided by a hydrogen-donor solvent; thus, they have attracted interest from researchers globally. The different liquefaction mechanisms of lignite including free radical, oxidation, alkanolysis, and hydrogenation lead to the corresponding products:preasphaltene and asphaltene, mixed carboxylic acids, mixed esters and ethers, and cyclic compounds, respectively. Therefore, the catalytic system of the lignite liquefaction process would be accordingly optimized and modified to afford different products.

Key words: Direct liquefaction, Catalytic system, Mechanism of liquefaction, Lignite coal, Fe-based catalyst