催化学报 ›› 2020, Vol. 41 ›› Issue (3): 390-403.DOI: 10.1016/S1872-2067(19)63514-X

• 综述 • 上一篇    下一篇

金属-空气电池中双功能电催化剂微纳结构设计

石芳a,b, 朱雪峰a, 杨维慎a   

  1. a 中国科学院大连化学物理研究所, 催化基础国家重点实验室, 辽宁大连 116023;
    b 中国科学院大学, 北京 100049
  • 收稿日期:2019-07-24 修回日期:2019-09-23 出版日期:2020-03-18 发布日期:2019-11-19
  • 通讯作者: 朱雪峰
  • 基金资助:
    国家自然科学基金(91545202,U1508203);中国科学院战略重点研究项目(XDB17000000);中国科学院青年创新促进会、辽宁振兴人才工程(XLYC1807066).

Micro-nanostructural designs of bifunctional electrocatalysts for metal-air batteries

Fang Shia,b, Xuefeng Zhua, Weishen Yanga   

  1. a State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics the Chinese Academy, Dalian 116023, Liaoning, China;
    b University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2019-07-24 Revised:2019-09-23 Online:2020-03-18 Published:2019-11-19
  • Supported by:
    All the authors appreciate the financial supports from the National Natural Science Foundation of China (91545202, U1508203), the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS) (XDB17000000), the Youth Innovation Promotion Association of the Chinese Academy of Sciences and the Liaoning Revitalization Talents Program (XLYC1807066).

摘要: 金属-空气二次电池在可再生电能的存储和转换方面具有广阔的应用前景.在金属-空气二次电池的空气侧,放电时发生氧还原反应(ORR),充电时发生氧析出反应(OER).然而,ORR和OER反应的动力学过程缓慢,因此限制了金属-空气二次电池的实际应用.因此,发展高性能ORR和OER电催化剂对金属-空气二次电池的发展尤为重要.目前,大多数的研究集中在ORR或OER的单功能电催化剂上,而关于双功能电催化剂的研究和综述相对较少.两个反应均具有较高的过电位和较缓慢的动力学过程,而且充电过程的高电压会导致ORR催化剂失活,反之亦然.因此,开发针对这两个反应均具有高活性和高稳定性的双功能电催化剂极具挑战性.近年来,研究者对具有低成本和高性能双功能电催化剂进行了探索.这些双功能电催化剂包括碳基材料,过渡金属材料和复合材料.双功能电催化剂可以通过提高本征活性和表观活性两种策略来提高其整体的活性.其中,本征活性与晶体结构和电子结构密切相关,即可以通过调节晶体结构和电子结构来提高其本征活性.例如,可以改变金属-氧键的强度、氧空位浓度等来调变电催化活性.在碳基材料中掺杂杂原子可以改变碳的电荷密度分布,从而实现对电催化活性的提高.此外,其表观活性还可以通过改变形貌并利用协同作用来改善.构建特殊微纳结构是提高电催化活性的最常用策略之一.在这种情况下,电催化剂具有较高的比表面积,大量的活性位点和良好的电子传导性.同时,复合电催化剂组分之间在加速电催化过程中的协同作用不容忽视.本文将聚焦双功能电催化剂的微纳结构设计,并简要讨论了纳米结构的精细调控和对反应机理的认识.
我们认为,未来的工作应继续加强ORR和OER的新型双功能电催化剂的开发,发展更多的合成方法对电催化剂的微纳结构进行调变,并对反应机理进行更深入的研究.首先,通过对结构的精细调变提高电催化剂的本征活性和表观活性.此外,通过多种原位表征方法揭示反应机理,这有助于电催化剂的设计和催化活性的进一步提升.基于此,开发出性能优异的双功能电催化剂以加快用于存储和转换可再生能源的可充电金属-空气二次电池的商业化进程.

关键词: 氧还原反应, 氧析出反应, 可逆金属-空气电池, 双功能电催化剂, 微纳结构

Abstract: Water-based rechargeable metal-air batteries play an important role in the storage and conversion of renewable electric energy. However, the sluggish kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have limited the practical application of rechargeable metal-air batteries. Most of reviews were focused on single functional electrocatalysts while few on bifunctional electrocatalysts. It is indispensable but challenging to design a bifunctional electrocatalyst that is active and stable to the two reactions. Recently, attempts to develop high active bifunctional electrocatalysts for both ORR and OER increase rapidly. Much work is focused on the micro-nano design of advanced structures to improve the performance of bifunctional electrocatalyst. Transition-metal materials, carbon materials and composite materials, and the methods developed to prepare micro-nano structures, such as electrochemical methods, chemical vapor deposition, hydrothermal methods and template methods are reported in literatures. Additionally, many strategies, such as adjustments of electronic structures, oxygen defects, metal-oxygen bonds, interfacial strain, nano composites, heteroatom doping etc., have been used extensively to design bifunctional electrocatalysts. To well understand the achievements in the recent literatures, this review focuses on the micro-nano structural design of materials, and the related methods and strategies are classed into two groups for the improvement of intrinsic and apparent activities. The fine adjustment of nano structures and an in-depth understanding of the reaction mechanism are also discussed briefly.

Key words: Oxygen reduction reaction, Oxygen evolution reaction, Rechargeable metal-air batteries, Bifunctional electrocatalysts, Micro-nano structure