催化学报 ›› 2020, Vol. 41 ›› Issue (5): 770-782.DOI: 10.1016/S1872-2067(19)63438-8
Marine Trégaro, Maha Rhandi, Florence Druart, Jonathan Deseure, Marian Chatenet
收稿日期:
2019-05-20
修回日期:
2019-07-03
出版日期:
2020-05-18
发布日期:
2019-12-31
通讯作者:
Marian Chatenet
Marine Trégaro, Maha Rhandi, Florence Druart, Jonathan Deseure, Marian Chatenet
Received:
2019-05-20
Revised:
2019-07-03
Online:
2020-05-18
Published:
2019-12-31
Contact:
S1872-2067(19)63438-8
摘要: 在未来的几十年里,氢将成为世界能源政策的基础,因为它的脱碳性质,至少在可再生能源生产时是如此.目前,氢基本上仍然是从化石原料中生产出来的(在某种程度上来自于生物质);因此,目前市场上的氢气含有不可忽略的杂质,这些杂质阻碍了氢气立即用于特殊化学或作为燃料电池的能量载体,例如在运输应用(汽车、公共汽车、火车、船只等)中逐渐扩散到地球上.因此,氢气必须具有足够的纯度,但也必须充分压缩(在高压下,通常为70MPa),这使得氢气循环中不可避免存在净化和压缩步骤.如本文第一部分“电化学氢压缩和净化与竞争技术的对比——第一部分:优缺点”所示,电化学氢压缩机(EHCs)能够实现氢净化和压缩,具有比它们相应的机械设备更多的理论(热力学)和实际(动力学)的优越性.然而,为了具有竞争力,EHCs必须在非常密集的条件下运行(高电流密度和低电池电压),只有在其核心材料(如膜和电极/电催化剂)经过优化后才能达到.本文将特别关注电催化剂在EHCs中必须表现出的特性:在杂质存在的情况下它们应促进(非常)快速的氢氧化反应(HOR),这意味着它们对毒物也具有(非常)耐受性.这包括操作氢气净化压缩所用的EHC阳极的先决条件,而大量低温燃料电池文献中为耐受毒性而开发的材料可能并不总是满足这两个标准,正如本综述所阐述的.
Marine Trégaro, Maha Rhandi, Florence Druart, Jonathan Deseure, Marian Chatenet. 电化学氢压缩和纯化与竞争技术的对比:II.电催化的挑战[J]. 催化学报, 2020, 41(5): 770-782.
Marine Trégaro, Maha Rhandi, Florence Druart, Jonathan Deseure, Marian Chatenet. Electrochemical hydrogen compression and purification versus competing technologies: Part II. Challenges in electrocatalysis[J]. Chinese Journal of Catalysis, 2020, 41(5): 770-782.
[1] "Home|California Fuel Cell Partnership."[Online]. Available:https://cafcp.org/.[Accessed:19-Feb-2019]. [2] "Development of the new model of a residential fuel cell, ‘ENE-FARM,’" Tokyo Gas: Technical Development/Comfortable housing and lifestyle-Residential Sector.[Online]. Available:https://www.tokyo-gas.co.jp/techno/english/menu3/2_index_detail.html.[Accessed:19-Feb-2019]. [3] "Fuel cell and hydrogen technology:Europe's journey to a greener world," presented at the 10th Stakeholder Forum I Fuel Cells and Hydrogen Joint Undertaking, 2017. [4] A. F. Ghoniem, Prog. Energy Combus. Sci., 2011, 37, 15-51. [5] S. Z. Baykara, Int. J. Hydrogen Energy, 2018, 43, 10605-10614. [6] R. Lukajtis, I. Holowacz, K. Kucharska, M. Glinka, P. Rybarczyk, A. Przyjazny, M. Kaminski, Renew. Sustainable Energy Rev., 2018, 91, 665-694. [7] J.-P. Magnin, J. Deseure, Appl. Energy, 2019, 239, 635-643. [8] S. Zhang, L. Wang, C. Liu, J. Luo, J. Crittenden, X. Liu, T. Cai, J. Yuan, Y. Pei, Y. Liu, Water Res., 2017, 121,11-19. [9] C. Vacquand, E. Deville, V. Beaumont, F. Guyot, O. Sissmann, D. Pillot, C. Arcilla, A. Prinzhofer, Geochim. Cosmochim. Acta, 2018, 223, 437-461. [10] "U.S. Department of Energy." [11] "ISO 14687-2:2012:Hydrogen fuel——Product specification——Part 2:Proton exchange membrane (PEM) fuel cell applications for road vehicles." 2012. [12] "ISO 14687-3:2014:Hydrogen fuel——Product specification——Part 3:Proton exchange membrane (PEM) fuel cell applications for stationary appliances." 2014. [13] G. Sdanghi, G. Maranzana, A. Celzard, V. Fierro, Renew. Sustainable Energy Rev., 2019, 102, 150-170. [14] B. A. T. Mehrabadi, H. N. Dinh, G. Bender, J. W. Weidner, J. Electrochem. Soc., 2016, 163, F1527-F1534. [15] T. Reshetenko, A. Serov, K. Artyushkova, I. Matanovic, Sarah Stariha, P. Atanassov, J. Power Sources, 2016, 324, 556-571. [16] O. A. Baturina, B. Dyatkin, T. V. Reshetenko, in:Nanostructured Materials for Next-Generation Energy Storage and Conversion:Fuel Cells, F. Li, S. Bashir, J. L. Liu, Eds. Berlin, Heidelberg:Springer Berlin Heidelberg, 2018, 407-441. [17] R. Tuominen, N. Helppolainen, J. Ihonen, J. Viitakangas, Int. J. Hydrogen Energy, 2018, 43, 4143-4159. [18] J. Qi, Y. Zhai, J. St-Pierre, J. Power Sources, 2019, 413, 86-97. [19] M. Chatenet, L. Dubau, N. Job, F. Maillard, Catal. Today, 2010, 156, 76-86 [20] F. Maillard, S. Pronkin, E. R. Savinova, in:Fuel Cell Catalysis, M. T. M. Koper, Ed. Hoboken, NJ, USA:John Wiley & Sons, Inc., 2009, 507-566. [21] P. J. Ferreira, G. J. la O', Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, H. A. Gasteiger, J. Electrochem. Soc., 2005, 152, A2256. [22] L. Dubau, L. Castanheira, F. Maillard, M. Chatenet, O. Lottin, G. Maranzana, J. Dillet, A. Lamibrac, J. Perrin, E. Moukheiber, A. ElKaddouri, G. De Moor, C. Bas, L. Flandin, N. Caque, Wiley Interdisciplinary Reviews:Energy Environment, 2014, 3, 540-560. [23] F. Maillard, S. Pronkin, E. R. Savinova, in:Hbook of Fuel Cells, W. Vielstich, A. Lamm, H. A. Gasteiger, H. Yokokawa, Eds. Chichester, John Wiley & Sons, Ltd, 2010. [24] E. Guilminot, A. Corcella, M. Chatenet, F. Maillard, F. Charlot, G. Berthome, C. Iojoiu, J.-Y. Sanchez, E. Rossinot, E. Claude, J. Electrochem. Soc., 2007, 154, B1106. [25] E. Guilminot, A. Corcella, F. Charlot, F. Maillard, M. Chatenet, J. Electrochem. Soc., 2007, 154, B96 [26] Y. Sun, Y. Dai, Y. Liu, S. Chen, Phys. Chem. Chem. Phys., 2012, 14, 2278. [27] C. M. Zalitis, J. Sharman, E. Wright, A. R. Kucernak, Electrochim. Acta, 2015, 176, 763-776. [28] B. M. Besancon, V. Hasanov, R. Imbault-Lastapis, R. Benesch, M. Barrio, M. J. Mølnvik, Int. J. Hydrogen Energy, 2009, 34, 2350-2360. [29] S. Abbou, J. Dillet, D. Spernjak, R. Mukundan, R. L. Borup, G. Maranzana, O. Lottin, J. Electrochem. Soc., 2015, 162, F1212-F1220. [30] S. Abbou, J. Dillet, G. Maranzana, S. Didierjean, O. Lottin, J. Power Sources, 2017, 340, 419-427. [31] S. Abbou, J. Dillet, G. Maranzana, S. Didierjean, O. Lottin, J. Power Sources, 2017, 340, 337-346. [32] S. Um, C.-Y. Wang, K. S. Chen, J. Electrochem.Soc., 2000, 147, 4485. [33] X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhang, D. Song, Z. Liu, H. Wang, J. Shen, J. Power Sources, 2007, 165, 739-756. [34] C. Y. Chen, W. H. Lai, W. M. Yan, C. C. Chen, S. W. Hsu, J. Power Sources, 2013, 243, 138-146. [35] T. Gu, W.-K. Lee, J. W. Van Zee, M. Murthy, J. Electrochem. Soc., 2004, 151, A2100. [36] T. Tingelöf, L. Hedström, N. Holmström, P. Alvfors, G. Lindbergh, Int. J. Hydrogen Energy, 2008, 33, 2064-2072. [37] B. Ibeh, C. Gardner, M. Ternan, Int. J. Hydrogen Energy, 2007, 32, 908-914. [38] C.-Y. Chen, K.-P. Huang, J. Appl. Electrochem., 2018, 48, 911-921. [39] J. Giner, Electrochim. Acta, 1963, 8, 857-865. [40] F. A. de Bruijn, D. C. Papageorgopoulos, E. F. Sitters, G. J. M. Janssen, J. Power Sources, 2002, 110, 117-124. [41] T. Gu, W. K. Lee, J. W. Van Zee, Appl. Catal. B, 2005, 56, 43-49. [42] M. A. Díaz, A. Iranzo, F. Rosa, F. Isorna, E. López, J. P. Bolivar, Energy, 2015, 90, 299-309. [43] W.-M. Yan, H.-S. Chu, M.-X. Lu, F.-B. Weng, G.-B. Jung, C.-Y. Lee, J. Power Sources, 2009, 188, 141-147. [44] D. C. Papageorgopoulos, F. A. de Bruijn, J. Electrochem. Soc., 2002, 149, A140. [45] R. Halseid, R. Tunold, J. Electrochem. Soc., 2006, 153, A2319. [46] N. Zamel, X. Li, Prog. Energy Combus. Sci., 2018, 37, 292-329. [47] J. J. Baschuk, X. Li, Int. J. Energy Res., 2001, 25, 695-713. [48] S. Gilman, J. Phys. Chem., 1964, 68, 70-80. [49] G. Karimi, X. Li, J. Power Sources, 2006, 159, 943-950. [50] R. Benesch, S. Salman, T. Jacksier, 2006, 1-11. [51] R. Halseid, P. J. S. Vie, R. Tunold, J. Power Sources, 2006, 154, 343-350. [52] F. A. Uribe, S. Gottesfeld, T. A. Zawodzinski, J. Electrochem. Soc., 2002, 149, A293. [53] H. J. Soto, W. Lee, J. W. Van Zee, M. Murthy, Electrochem. Solid-State Lett., 2003, 6, A133. [54] R. Halseid, P. J. S. Vie, R. Tunold, J. Electrochem. Soc., 2004, 151, A381. [55] D. Imamura, Y. Matsuda, Y. Hashimasa, M. Akai, ECS Trans., 2011, 41, 2083-2089. [56] V. Rosca, M. T. M. Koper, Phys. Chem. Chem. Phys., 2006, 8, 2513. [57] Y. A. Gomez, A. Oyarce, G. Lindbergh, C. Lagergren, J. Electrochem. Soc., 2018, 165, F189-F197. [58] T. E. Springer, T. Rockward, T. A. Zawodzinksi, S. Gottesfeld, J. Electrochem. Soc., 2001, 148, L9. [59] W. Vogel, J. Lundquist, P. Ross, P. Stonehart, Electrochim. Acta, 1975, 20, 79-93. [60] M. Murthy, M. Esayian, W. Lee, J. W. Van Zee, J. Electrochem. Soc., 2003, 150, A29. [61] L. Dubau, F. Maillard, Electrochem. Commun., 2016, 63, 65-69. [62] W. H. Scholz, Gas Sep. Purif., 1993, 7, 131-139. [63] W. Yourong, Y. Heqing, W. E'feng, J. Electroanal. Chem., 2001, 497, 163-167. [64] R. Jayaram, A. Q. Contractor, H. Lal, J. Electroanal. Chem., 1978, 87, 225-237. [65] E. Najdeker, E. Bishop, Electroanal. Chem. Interfacial Electrochem., 1973, 41, 79-87. [66] T. Loucka, Electroanal. Chem. Interfacial Electrochem., 1971, 31, 319-332. [67] W. Shi, B. Yi, M. Hou, F. Jing, H. Yu, P. Ming, J. Power Sources, 2007, 164, 272-277. [68] V. A. Sethuraman, J. W. Weidner, Electrochim. Acta, 2010, 55, 5683-5694. [69] R. Mohtadi, W. K. Lee, J. W. Van Zee, Appl. Catal. B, 2005, 56, 37-42. [70] A. A. Shah, F. C. Walsh, J. Power Sources, 2008, 185, 287-301. [71] I. G. Urdampilleta, F. A. Uribe, T. Rockward, E. L. Brosha, B. S. Pivovar, F. H. Garzon, ECS Trans., 2007, 11, 831-842. [72] K. K. Bhatia, C. Y. Wang, Electrochim. Acta, 2004, 49, 2333-2341. [73] G. J. M. Janssen, J. Power Sources, 2004, 136, 45-54. [74] W. Shi, B. Yi, M. Hou, Z. Shao, Int. J. Hydrogen Energy, 2007, 32, 4412-4417. [75] X. Wang, P. Baker, X. Zhang, H. F. Garces, L. J. Bonville, U. Pasaogullari, T. M. Molter, Int. J. Hydrogen Energy, 2014, 39, 19701-19713. [76] D. Imamura, Y. Hashimasa, ECS Trans., 2007, 11, 853-862. [77] M. S. Wilson, C. R. Derouin, J. Valerio, S. Gottesfeld, in:Proceedings of the 28th Intersociety Energy conversion engineering conference, Atlanta, Georgia, 1993, 1203-1208. [78] S. Gottesfeld, J. Pafford, J. Electrochem. Soc., 1988, 135, 2651. [79] P. A. Adcock, S. V. Pacheco, K. M. Norman, F. A. Uribe, J. Electrochem. Soc., 2005, 152, A459. [80] J. J. Baschuk, X. Li, Int. J. Energy Res., 2003, 27, 1095-1116. [81] T. Lopes, V. A. Paganin, E. R. Gonzalez, J. Power Sources, 2011, 196, 6256-6263. [82] C. L. Gardner, M. Ternan, J. Power Sources, 2007, 171, 835-841. [83] A. Hassan, V. A. Paganin, E. A. Ticianelli, Electrocatalysis, 2015, 6, 512-520. [84] F. R. Nikkuni, B. Vion-Dury, L. Dubau, F. Maillard, E. A. Ticianelli, M. Chatenet, Appl. Catal. B, 2014, 156-157, 301-306. [85] F. R. Nikkuni, L. Dubau, E. A. Ticianelli, M. Chatenet, Appl. Catal. B, 2015, 176-177, 486-499. [86] A. A. Topalov, S. Cherevko, A. R. Zeradjanin, J. C. Meier, I. Katsounaros, K. J. J. Mayrhofer, Chem. Sci., 2014, 5, 631-638. [87] S. Cherevko, G. P. Keeley, S. Geiger, A. R. Zeradjanin, N. Hodnik, N. Kulyk, K. J. J. Mayrhofer, ChemElectroChem, 2015, 2, 1471-1478. [88] S. Cherevko, A. R. Zeradjanin, G. P. Keeley, K. J. J. Mayrhofer, J. Electrochem.Soc., 2014, 161, H822-H830. [89] A. Zadick, L. Dubau, N. Sergent, G. Berthomé, M. Chatenet, ACS Catal., 2015, 5, 4819-4824. [90] C. Lafforgue, A. Zadick, L. Dubau, F. Maillard, M. Chatenet, Fuel Cells, 2018, 18, 229-238. [91] M. Schalenbach, O. Kasian, M. Ledendecker, F. D. Speck, A. M. Mingers, K. J. J. Mayrhofer, S. Cherevko, Electrocatalysis, 2018, 9, 153-161. [92] C. Yang, J. Wang, H. Fan, Y. Hu, J. Shen, J. Shangguan, B. Wang, Energy Fuels, 2018, 32, 6064-6072. [93] C. Babé, M. Tayakout-Fayolle, C. Geantet, M. Vrinat, G. Bergeret, T. Huard, D. Bazer-Bachi, Chem. Eng. Sci., 2012, 82, 73-83. [94] H. A. Aleksrov, P. St. Petkov, G. N. Vayssilov, Energy Environ. Sci., 2011, 4, 1879. [95] A. Golmakani, S. Fatemi, J. Tamnanloo, Sep. Purif. Technol., 2017, 176, 73-91. [96] T. Yamamoto, M. Tayakout-Fayolle, C. Geantet, Chem. Eng. J., 2015, 262, 702-709. [97] A. B. Anderson, E. Grantscharova, J. Phys. Chem., 1995, 99, 9143-9148. [98] D. A. Tryk, G. Shi, H. Yano, J. Inukai, H. Uchida, A. Iiyama, M. Matsumoto, H. Tanida, M. Arao, H. Imai, ECS Trans., 2018, 85, 41-46. [99] F. Maillard, M. Eikerling, O. V. Cherstiouk, S. Schreier, E. R. Savinova, U. Stimming, Faraday Disc., 2004, 125, 357. [100] F. Maillard, S. Schreier, M. Hanzlik, E. R. Savinova, S. Weinkauf, U. Stimming, Phys. Chem. Chem. Phys., 2005, 7, 385-393. [101] S. Brimaud, S. Pronier, C. Coutanceau, J. M. Léger, Electrochem. Commun., 2008, 10, 1703-1707. [102] L. G. S. Pereira, V. A. Paganin, E. A. Ticianelli, Electrochim. Acta, 2009, 54, 1992-1998. [103] G. García, J. A. Silva-Chong, O. Guillén-Villafuerte, J. L. Rodríguez, E. R. González, E. Pastor, Catal. Today, 2006, 116, 415-421. [104] S. Iwase, M., Kawatsu, In Proceedings of the first International Symposium on proton conducting membrane fuel cells, 1995, 1, 12-18. [105] S. Carenco, Chem. Eur. J., 2014, 20, 10616-10625. [106] M. Watanabe, S. Motoo, Electroanal. Chem. Interf. Electrochem., 1975, 60, 275-293. [107] H. A. Gasteiger, N. Markovic, P. N. Ross, E. J. Cairns, J. Phys. Chem., 1994, 98, 617-625. [108] H. A. Gasteiger, N. M. Markovic, P. N. Ross, J. Phys. Chem., 1995, 99, 16757-16767. [109] H. A. Gasteiger, N. Markovic, P. N. Ross, E. J. Cairns, J. Phys. Chem., 1993, 97, 12020-12029. [110] T. Kawaguchi, W. Sugimoto, Y. Murakami, Y. Takasu, Electrochem. Commun., 2004, 6, 480-483. [111] L. Dubau, F. Hahn, C. Coutanceau, J.-M. Léger, C. Lamy, J. Electroanal. Chem., 2003, 554-555, 407-415. [112] R. Mohtadi, W. -k. Lee, S. Cowan, J. W. Van Zee, M. Murthy, Electrochem. Solid-State Lett., 2003, 6, A272. [113] L. Gancs, B. N. Hult, N. Hakim, S. Mukerjee, Electrochem. Solid-State Lett., 2007, 10, B150. [114] H. A. Gasteiger, N. M. Markovic, P. N. Ross, J. Phys. Chem., 1995, 99, 8945-8949. [115] K. Wang, H. A. Gasteiger, N. M. Markovic, P. N. Ross, Electrochim. Acta, 1996, 41, 2587-2593. [116] D. Lee, S. Hwang, I. Lee, J. Power Sources, 2005, 145, 147-153. [117] E. I. Santiago, G. A. Camara, E. A. Ticianelli, Electrochim. Acta, 2003, 48, 3527-3534. [118] E. I. Santiago, M. S. Batista, E. M. Assaf, E. A. Ticianelli, J. Electrochem. Soc., 2004, 151, A944. [119] R. C. Urian, A. F. Gullá, S. Mukerjee, J. Electroanal. Chem., 2003, 554-555, 307-324. [120] S. Mukerjee, R. C. Urian, S. J. Lee, E. A. Ticianelli, J. McBreen, J. Electrochem. Soc., 2004, 151, A1094. [121] T. C. M. Nepel, P. P. Lopes, V. A. Paganin, E. A. Ticianelli, Electrochim. Acta, 2013, 88, 217-224. [122] A. Hassan, E. A. Ticianelli, Anais da Academia Brasileira de Ciencias, 2018, 90, 697-718. [123] M. Götz, H. Wendt, Electrochim. Acta, 1998, 43, 3637-3644. [124] T. Ioroi, Z. Siroma, S. Yamazaki, K. Yasuda, Adv. Energy Mater., 2018, 1801284. [125] T. Ioroi, T. Akita, S. Yamazaki, Z. Siroma, N. Fujiwara, K. Yasuda, Electrochim. Acta, 2006, 52, 491-498. [126] L. Liu, F. Zhou, R. Kodiyath, S. Ueda, H. Abe, D. Wang, Y. Deng, J. Ye, Phys. Chem. Chem. Phys., 2016, 18, 29607-29615. [127] K. Kwon, Y. Jung, H. Ku, K. H. Lee, S. Kim, J. Sohn, C. Pak, Catalysts, 2016, 6, 68. [128] D. Takimoto, T. Ohnishi, Y. Ayato, D. Mochizuki, W. Sugimoto, J. Electrochem. Soc., 2016, 163, 367-371. [129] F. Micoud, PhD Thesis, 2009. [130] F. Micoud, F. Maillard, A. Gourgaud, M. Chatenet, Electrochem. Commun., 2009, 11, 651-654. [131] F. Micoud, F. Maillard, A. Bonnefont, N. Job, M. Chatenet, Phys. Chem. Chem. Phys., 2010, 12, 1182-1193. [132] D. Takimoto, T. Ohnishi, W. Sugimoto, ECS Electrochem. Lett., 2015, 4, F35-F37. [133] S. I. Yamazaki, Y. Yamada, S. Takeda, M. Goto, T. Ioroi, Z. Siroma, K. Yasuda, Phys. Chem. Chem. Phys., 2010, 12, 8968-8976. [134] S. Yamazaki, M. Yao, S. Takeda, Z. Siroma, T. Ioroi, K. Yasuda, Electrochem. Solid-State Lett., 2011, 14, B23. [135] F. Gloaguen, F. Andolfatto, R. Durand, P. Ozil, J. Appl. Electrochem., 1994, 24, 863-869. [136] J. Durst, A. Siebel, C. Simon, F. Hasché, J. Herranz, H. A. Gasteiger, Energy Environ. Sci., 2014, 7, 2255-2260. [137] J. Durst, C. Simon, F. Hasché, H. A. Gasteiger, J. Electrochem. Soc., 2015, 162, F190-F203. [138] C. M. Zalitis, D. Kramer, A. R. Kucernak, Phys. Chem. Chem. Phys., 2013, 15, 4329-4340. [139] A. R. Kucernak, C. M. Zalitis, J. Phys. Chem. C, 2016, 120, 10721-10745. [140] M. Inaba, A. W. Jensen, G. W. Sievers, M. Escudero-Escribano, A. Zana, M. Arenz, Energy Environ. Sci., 2018, 11, 988-994. [141] K. C. Neyerlin, W. Gu, J. Jorne, H. A. Gasteiger, J. Electrochem. Soc., 2007, 154, B631. |
[1] | 刘勇, 赵晓丽, 隆昶, 王晓艳, 邓邦为, 李康璐, 孙艳娟, 董帆. 原位构筑动态Cu/Ce(OH)x界面用于高活性、高选择性和高稳定性硝酸盐还原合成氨[J]. 催化学报, 2023, 52(9): 196-206. |
[2] | 周波, 石建巧, 姜一民, 肖磊, 逯宇轩, 董帆, 陈晨, 王特华, 王双印, 邹雨芹. 强化脱氢动力学实现超低电池电压和大电流密度下抗坏血酸电氧化[J]. 催化学报, 2023, 50(7): 372-380. |
[3] | 欧阳玲, 梁杰, 罗永嵩, 郑冬冬, 孙圣钧, 刘倩, Mohamed S. Hamdy, 孙旭平, 应斌武. 电催化合成氨的研究进展[J]. 催化学报, 2023, 50(7): 6-44. |
[4] | 李静静, 张锋伟, 詹新雨, 郭河芳, 张涵, 昝文艳, 孙振宇, 张献明. 酞菁镍分子结构的精确设计: 优化电子和空间效应用于CO2电还原[J]. 催化学报, 2023, 48(5): 117-126. |
[5] | 张文静, 李静, 魏子栋. 碳基氧还原电催化剂: 机理研究和多孔结构[J]. 催化学报, 2023, 48(5): 15-31. |
[6] | 吴则星, 高玉肖, 王子璇, 肖卫平, 王新萍, 李彬, 李镇江, 刘晓斌, 马天翼, 王磊. 表面富集的超小铂纳米颗粒耦合缺陷磷化钴用于高效的电催化水分解和柔性锌空气电池[J]. 催化学报, 2023, 46(3): 36-47. |
[7] | 张平, 陈浩, 陈林, 熊鹰, 孙子其, 杨浩宇, 付莹珂, 张亚萍, 廖婷, 李斐. 基于NiZn层状双金属氢氧化物制备高效电催化CO2还原的原子分散Ni-N-C催化剂[J]. 催化学报, 2023, 45(2): 152-161. |
[8] | 刘小妮, 刘晓斌, 李彩霞, 杨波, 王磊. 缺陷工程在金属基电池中的研究进展[J]. 催化学报, 2023, 45(2): 27-87. |
[9] | 杨竣皓, 安露露, 王双, 张辰浩, 罗官宇, 陈应泉, 杨会颖, 王得丽. 层状双氢氧化物基电解水催化剂的缺陷工程调控策略[J]. 催化学报, 2023, 55(12): 116-136. |
[10] | 逯宇轩, 杨柳, 姜一民, 原甑然, 王双印, 邹雨芹. 局域静电环境工程用于增强电催化生物质转化过程中羟基活性[J]. 催化学报, 2023, 53(10): 153-160. |
[11] | 谢起贤, 任丹, 柏力晨, 格日乐, 周雯慧, 白璐, 谢微, 王军虎, Michael Grätzel, 罗景山. 镍铁层状双金属氢氧化物在不同pH电解液体系中的析氧反应[J]. 催化学报, 2023, 44(1): 127-138. |
[12] | 乔玉彦, 潘艳秋, 张江威, 王彬, 武婷婷, 范文俊, 曹雨程, Rashid Mehmood, 张飞, 章福祥. 多碳界面工程用于促进NiFe纳米复合电催化剂的产氧反应[J]. 催化学报, 2022, 43(9): 2354-2362. |
[13] | 白雪, 段志遥, 南兵, 王黎明, 唐甜蜜, 管景奇. 揭示超薄Co-Fe层状双氢氧化物析氧反应的活性位点[J]. 催化学报, 2022, 43(8): 2240-2248. |
[14] | 崔彤, 翟雪君, 郭莉莉, 迟京起, 张昱, 朱家伟, 孙雪梅, 王磊. 自组装百合花状超低Ru, Ni掺杂的Fe2O3用于大电流碱性海水电解双功能电催化[J]. 催化学报, 2022, 43(8): 2202-2211. |
[15] | 钱秀, 魏艳娇, 孙梦洁, 韩野, 张晓俐, 田健, 邵敏华. 在Ti3C2Tx MXene上原位生长2D TiO2纳米片的异质结构用于改善电催化氮气还原[J]. 催化学报, 2022, 43(7): 1937-1944. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||