催化学报 ›› 2020, Vol. 41 ›› Issue (5): 783-798.DOI: 10.1016/S1872-2067(20)63536-7

• 电催化专栏 • 上一篇    下一篇

双原子催化剂:制备、表征和应用

张晶a,b, 黄秋安a, 王娟b, 王静a, 张久俊a, 赵玉峰a,c   

  1. a 上海大学可持续能源研究院/理学院, 上海 200444;
    b 西安建筑科技大学机电工程学院, 陕西省纳米材料与技术重点实验室, 陕西西安 710055;
    c 燕山大学应用化学重点实验室, 河北秦皇岛 066004
  • 收稿日期:2019-10-12 修回日期:2019-11-23 出版日期:2020-05-18 发布日期:2019-12-31
  • 通讯作者: 赵玉峰, 王娟
  • 基金资助:
    国家自然科学基金(51774251);河北杰出青年科学基金(B2017203313);河北省百名创新人才经费(SLRC2017057);特种电源国家重点实验室开放基金(SKL-ACPS-C-11);河北省人才工程培养经费(A201802001).

Supported dual-atom catalysts: Preparation, characterization, and potential applications

Jing Zhanga,b, Qiu-an Huanga, Juan Wangb, Jing Wanga, Jiujun Zhanga, Yufeng Zhaoa,c   

  1. a Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China;
    b Shanxi Key Laboratory of Nanomaterials and Nanotechnology, School of Mechanical & Electrical engineering, Xi'an University of Architecture and Technology, 710055 Xi'an, Shaanxi, China;
    c Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, Hebei, China
  • Received:2019-10-12 Revised:2019-11-23 Online:2020-05-18 Published:2019-12-31
  • Contact: 10.1016/S1872-2067(20)63536-7
  • Supported by:
    This work was supported by the National Natural Sciecne Foundation of China (51774251), the Hebei Science Foundation for Distinguished Young Scholars (B2017203313), Hundreds of Innovative Talents in Hebei Province (SLRC2017057), the opening project of the state key laboratory of Advanced Chemical Power Sources (SKL-ACPS-C-11), and the Talent Engineering Training Funds of Hebei Province (A201802001).

摘要: 发展可持续和清洁的电化学能源转化技术是应对能源短缺和环境污染挑战的关键一步,燃料电池、电解电池和金属空气电池作为清洁能源储存和转换装置目前得到广泛应用推广,这些装置依靠电催化反应以及电极材料上发生的电荷转移过程来转换电能和化学能.而电催化剂是该类装置电极材料的核心部件,电催化反应的热力学和动力学过程与电催化剂的物理性质和化学状态密切相关.因此探索和开发性能优良、成本低廉的新型电催化剂,将进一步促进这些能源转化技术的商业化应用.
单原子催化剂(SACs)以其暴露的活性位点、高选择性和最大限度地原子利用率而受到人们的广泛关注.然而,随着单原子表面自由能的增加,粒子在制备和催化过程中的聚集,催化活性位点的降低和催化剂负荷的相对较低,严重制约了SACs的发展和应用.考虑到SACs的缺点,为了进一步增加单原子活性位点的数量和负载,双原子催化剂(DACs)作为SACs家族成员的扩展近年来逐渐兴起,且两种金属原子(同核/异核)在DACs中的协同作用显著提高了催化剂的催化活性.
本文基于当前最新的研究工作对比了同核/异核DACs的不同优势,列举了一系列包括原子层沉积法、湿化学吸附法以及高温热处理法等方法用于制备性能优异的DACs,其中高温热处理法因应用广泛被重点强调.同时,本文也对DACs的表征和识别手段进行了重点概括,包含XANES,EXAFS,IR,DFT等;详细概括和对比了当前DACs在电化学方面的主要应用,如氧还原反应(ORR)和二氧化碳还原反应.
目前,DACs作为一个新兴的研究领域,由于其金属原子负载量高、活性位点比SACs更为灵活,已经在电催化领域取得了快速的发展.相对于同核DACs,原则上不同的两个金属原子会组成更多的异核DACs,因此,对于性能优异的异核DACs还有更多的可能性值得深入探索.可以预见,DACs的发展将弥补SACs的不足,在电化学能源的转换和储存方面发挥全面的优势;借助于异核DACs中不同的两个金属原子的多样性,探索以过渡金属为主的DACs,将会为节约贵金属资源及环境保护带来巨大贡献,进一步设计和优化DACs,有利于燃料电池和金属-空气电池创造出更大的经济效益和社会效益.因此,我们相信DACs的发展将成为材料研究的一个新前沿,并为合成更多的高效应用催化剂开辟一条新的途径.

关键词: 双原子催化剂, 同核, 异核, 电化学, 能源转换和储存

Abstract: Developing sustainable and clean electrochemical energy conversion technologies is a crucial step in addressing the challenges of energy shortage and environmental pollution. Exploring and developing new electrocatalysts with excellent performance and low cost will facilitate the commercial use of these energy conversion technologies. Recently, dual-atom catalysts (DACs) have attracted considerable research interest since they exhibit higher metal atom loading and more flexible active sites compared to single-atom catalysts (SACs). In this paper, the latest preparation methods and characterization techniques of DACs are systematically reviewed. The advantages of homonuclear and heteronuclear DACs and the catalytic mechanism and identification technologies between the two DACs are highlighted. The current applications of DACs in the field of electrocatalysis are summarized. The development opportunities and challenges of DACs in the future are prospected. The ultimate goal is to provide new ideas for the preparation of new catalysts with excellent properties by customizing diatomic catalysts for electrochemical applications.

Key words: Dual-atoms catalyst, Homonuclear, Heteronuclear, Electrocatalyst, Energy conversion and storage device