催化学报 ›› 2020, Vol. 41 ›› Issue (5): 830-838.DOI: 10.1016/S1872-2067(19)63485-6

• 电催化专栏 • 上一篇    下一篇

氮硫共掺杂高比表面中空碳球的制备及其在电催化二氧化碳还原中的应用

李国栋a,b, 覃永杰b, 吴玉a,b, 裴蕾b, 胡琪b, 杨恒攀b, 张黔玲b, 刘剑洪b, 何传新b   

  1. a 中国科学技术大学化学物理系, 安徽合肥 230026;
    b 深圳大学化学与环境工程学院, 广东深圳 518060
  • 收稿日期:2019-09-25 修回日期:2019-10-29 出版日期:2020-05-18 发布日期:2019-12-31
  • 通讯作者: 何传新
  • 基金资助:
    国家自然科学基金(21574084,21571131);广东省自然科学基金(2017A040405066);深圳市科技计划项目(JCYJ20160308104704791,JCYJ20170818091657056).

Nitrogen and sulfur dual-doped high-surface-area hollow carbon nanospheres for efficient CO2 reduction

Guodong Lia,b, Yongjie Qinb, Yu Wua,b, Lei Peib, Qi Hub, Hengpan Yangb, Qianling Zhangb, Jianhong Liub, Chuanxin Heb   

  1. a Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, China;
    b Shenzhen Key Laboratory for Functional Polymer, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
  • Received:2019-09-25 Revised:2019-10-29 Online:2020-05-18 Published:2019-12-31
  • Contact: S1872-2067(19)63485-6
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (21574084, 21571131), the Natural Science Foundation of Guangdong (2017A040405066), and Shenzhen Government's Plan of Science and Technology (JCYJ20160308104704791, JCYJ20170818091657056).

摘要: 化石燃料是现代能源体系的重要支柱,其大量使用导致大气中CO2浓度不断增加,加剧了全球变暖和环境恶化.因此,各国研究人员开发了大量技术手段以捕获和重新再利用CO2这一丰富的碳资源.其中,CO2电催化还原(CO2RR)技术在减少CO2排放和将其转化为有用化学品等方面极具潜力.但是,CO2RR具有反应能垒高和动力学过程缓慢等特点,进而限制其转化效率,故使用传统的贵金属材料(Ag,Au,Cu及Pd等)作为CO2RR高效的催化剂.然而,贵金属材料的大规模应用受限于它们成本高昂、稳定性差及环境毒性等缺点.在各类可替代贵金属催化剂中,碳材料因其廉价丰富、结构可调和导电性高的特点在CO2RR应用上展现出诱人的前景,因此,探索合适的碳基催化剂在高效催化二氧化碳领域具有重要的研究价值和意义.
本文通过简单有效的方法制备了一种氮硫共掺杂的高比表面的碳基催化剂(SZ-HCN)用于CO2RR.首先利用表面活性剂胶束Triton X-100作为模板诱导调控,合成了具有中空结构的苯胺-吡咯共聚物,并以此为碳前驱体,通过一步热解共聚物和硫粉获得N和S共掺杂多孔碳,材料的高比表面积(1510m2 g-1)得益于中空结构和ZnCl2盐造成的纳米孔结构.值得注意的是,高比表面的多孔结构且有效共掺杂N/S,能提供更多的高活性催化位点和有利于相关反应物种的传输.通过扫描电子显微镜、高分辨透射电子显微镜、高角环形暗场-扫描透射-元素分布、N2吸脱附等温分析及X射线光电子能谱等物理表征证实了催化剂材料的中孔结构和N/S共掺杂组分.进一步通过电化学测试分析和产物测试分析可知,电催化剂SZ-HCN在-0.60V还原CO2为CO的法拉第效率高达93%,明显抑制竞争反应HER.此外,在-0.60V恒电位下连续20h测试,依旧保持稳定的电流密度(-5.2mAcm-2)和高的CO选择性,显示了出色的耐久性和潜在应用性.
我们采用密度泛函数理论探究N和S掺杂的影响,模拟计算可知,相比单一N掺杂的催化剂,N,S共掺杂可以提供更多的活性位点,降低CO2还原为CO反应中决速步生成COOH*的吉布斯自由能垒,进而提高催化活性.SZ-HCN催化剂展现出的优异CO2RR活性和稳定性主要归因于:(1) N和S元素均匀掺杂到碳基体中,两者的协同效应导致碳电荷再分布形成高活性位点,提高本征活性;(2)高比表面的多级孔结构提供了丰富的三相接触界面和有利的传输通道,便于反应相关物种的快速转移.该碳基催化剂材料在替代贵金属应用于CO2RR展示了一定的潜力.

关键词: 高比表面, 中空结构, 碳基催化剂, CO2电还原, 电催化选择性

Abstract: The electrochemical reduction of CO2 (CO2RR) can substantially contribute to the production of useful chemicals and reduction of global CO2 emissions. Herein, we presented N and S dual-doped high-surface-area carbon materials (SZ-HCN) as CO2RR catalysts. N and S were doped by one-step pyrolysis of a N-containing polymer and S powder. ZnCl2 was applied as a volatile porogen to prepare porous SZ-HCN. SZ-HCN with a high specific surface area (1510 m2 g-1) exhibited efficient electrocatalytic activity and selectivity for CO2RR. Electrochemical measurements demonstrated that SZ-HCN showed excellent catalytic performance for CO2-to-CO reduction with a high CO Faradaic efficiency (~93%) at -0.6 V. Furthermore, SZ-HCN offered a stable current density and high CO selectivity over at least 20 h continuous operation, revealing remarkable electrocatalytic durability. The experimental results and density functional theory calculations indicated that N and S dual-doped carbon materials required lower Gibbs free energy to form the COOH* intermediate than that for single-N-doped carbon for CO2-to-CO reduction, thereby enhancing CO2RR activity.

Key words: High specific surface area, Hollow structure, Carbon-based catalysts, CO2 reduction reaction, Electrocatalytic selectivity