催化学报 ›› 2020, Vol. 41 ›› Issue (6): 928-937.DOI: 10.1016/S1872-2067(20)63540-9

• 综述 • 上一篇    下一篇

铜-氧化铈界面:几何及电子结构

周燕, 陈阿玲, 宁静, 申文杰   

  1. 中国科学院大连化学物理研究所催化基础国家重点实验室, 辽宁大连 116023
  • 收稿日期:2019-10-21 修回日期:2019-11-29 出版日期:2020-06-18 发布日期:2020-01-21
  • 通讯作者: 申文杰
  • 基金资助:
    国家自然科学基金(21761132031,21533009,91645107,21621063).

Electronic and geometric structure of the copper-ceria interface on Cu/CeO2 catalysts

Yan Zhou, Aling Chen, Jing Ning, Wenjie Shen   

  1. State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
  • Received:2019-10-21 Revised:2019-11-29 Online:2020-06-18 Published:2020-01-21
  • Contact: 10.1016/S1872-2067(20)63540-9
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (21761132031, 21533009, 91645107, 21621063).

摘要: 纳米催化材料的性能主要由粒子尺寸、形貌和界面决定,即活性位点的电子及几何结构.尺寸、形貌可控的纳米催化材料的合成及其反应性能的研究,即催化剂的构效关系,一直是催化领域的研究热点.氧化物负载的金属催化剂广泛应用于多相催化反应过程.基于氧化铈优异的氧化还原性能,Cu/CeO2催化剂在CO氧化、N2O消除、水气变换、甲醇合成等反应中表现出优异性能.其中,通过铜物种与氧化铈表面化学键合形成的金属-载体界面通常被认为是催化活性中心.铜物种和氧化铈的相互作用主要体现在氧化铈固定铜物种,而铜物种促进氧化铈的氧化还原能力,涉及Cu2+/Cu+/Cu0和Ce3+/Ce4+之间电子的传输和转移.
Cu/CeO2催化剂活性位的原子结构与金属-载体相互作用程度密切相关.氧化铈形貌和铜负载量是决定界面电子和几何结构的重要因素.常见的纳米氧化铈形貌包括纳米粒子(多面体)、纳米棒和纳米立方体,可分别选择性暴露(111)、(110)和(100)晶面;这些晶面上原子配位环境和化学性能决定了铜-氧化铈的键合方式和界面结构.与暴露{100}晶面的纳米立方体相比,主要暴露{100}/{110}镜面的氧化铈纳米棒、暴露{111}/{100}晶面的纳米粒子与铜物种具有更强的金属-载体相互作用程度,也更有利于铜物种的分散.铜的负载量也显著影响铜物种在特定氧化铈表面的分散度和化学状态;随着铜负载量的增加,可在氧化铈表面形成层状铜、铜团簇和铜纳米粒子.通常情况下,低负载量有利于单层、双层铜物种的形成,高负载量时则出现多层铜和铜纳米粒子.催化活性位通常是由铜原子与氧化铈上的氧空穴相互作用产生,与氧化铈表面氧空穴的数量和密度密切相关,即氧化铈形貌.
本文总结了Cu/CeO2催化剂的研究进展,讨论了氧化铈形貌和铜负载量对铜物种分散度和化学状态的影响规律,总结了铜氧化铈界面结构的多维度表征结果,比较了Cu/CeO2催化剂在CO氧化、水气变换及甲醇合成中的活性位结构和反应机制.

关键词: Cu/CeO2, 氧化铈形貌, 铜纳米粒子, 界面结构, 活性位

Abstract: The atomic structure of the active sites in Cu/CeO2 catalystsis intimately associated with the copper-ceria interaction. Both the shape of ceria and the loading of copper affect the chemical bonding of copper species on ceria surfaces and the electronic and geometric character of the relevant interfaces. Nanostructured ceria, including particles (polyhedra), rods, and cubes, provides anchoring sites for the copper species. The atomic arrangements and chemical properties of the (111), (110) and (100) facets, preferentially exposed depending on the shape of ceria, govern the copper-ceria interactions and in turn determine their catalytic properties. Also, the metal loading significantly influences the dispersion of copper species on ceria with a specific shape, forming copper layers, clusters, and nanoparticles. Lower copper contents result in copper monolayers and/or bilayers while higher copper loadings lead to multi-layered clusters and faceted particles. The active sites are usually generated via interactions between the copper atoms in the metal species and the oxygen vacancies on ceria, which is closely linked to the number and density of surface oxygen vacancies dominated by the shape of ceria.

Key words: Cu/CeO2 catalyst, Ceria shape, Oxygen vacancy, Copper particle, Copper-ceria interface, Active site