催化学报 ›› 2020, Vol. 41 ›› Issue (6): 998-1005.DOI: 10.1016/S1872-2067(19)63504-7

• 论文 • 上一篇    下一篇

金属纳米粒子再分散法测定二氧化铈稳定的单原子的位点数

Aisulu Aitbekova, Cody J. Wrasman, Andrew R. Riscoe, Larissa Y. Kunz, Matteo Cargnello   

  1. 斯坦福大学化学工程系, 界面科学与催化SUNCAT中心, 加利福尼亚 94305, 美国
  • 收稿日期:2019-08-01 修回日期:2019-09-12 出版日期:2020-06-18 发布日期:2020-01-21
  • 通讯作者: Matteo Cargnello

Determining number of sites on ceria stabilizing single atoms via metal nanoparticle redispersion

Aisulu Aitbekova, Cody J. Wrasman, Andrew R. Riscoe, Larissa Y. Kunz, Matteo Cargnello   

  1. Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, California 94305, United States
  • Received:2019-08-01 Revised:2019-09-12 Online:2020-06-18 Published:2020-01-21
  • Contact: S1872-2067(19)63504-7

摘要: 单原子催化剂由于能最大限度地利用贵金属以及其独特的催化性能而引起了人们的兴趣.基于其表面原子性质,CeO2是稳定单金属原子最常用的载体之一.一旦金属含量超过其负载的载体容量,就会形成金属纳米粒子,因而许多单原子催化剂的金属含量受限.目前,还没有直接的测量方法来确定载体稳定单个原子的容量.本文开发了一种基于纳米颗粒的技术,即通过将Ru纳米颗粒重新分散成单个原子,并利用Ru单原子和纳米颗粒在CO2加氢反应中的不同催化性能,从而确定该容量.该方法避免了湿浸初期反离子对金属负载的影响,最终可应用于多种不同的金属.结果表明,该技术可跟踪氧空位浓度和表面氧含量的变化趋势,有望成为一种定量测定载体单原子稳定容量的新方法.

关键词: 氧化铈, 单原子催化剂, 氧空位, CO2加氢, 再分散

Abstract: Single atom catalysts have recently attracted interest due to their maximization of the utilization of expensive noble metals as well as their unique catalytic properties. Based on its surface atomic properties, CeO2 is one of the most common supports for stabilizing single metal atoms. Many single atom catalysts are limited in their metal contents by the formation of metal nanoparticles once the catalyst support capacity for single atoms has been exceeded. Currently, there are no direct measurements to determine the capacity of a support to stabilize single atoms. In this work we develop a nanoparticle-based technique that allows for quantification of that capacity by redispersing Ru nanoparticles into single atoms and taking advantage of the different catalytic properties of Ru single atoms and nanoparticles in the CO2 hydrogenation reaction. This method avoids complications in metal loading caused by counterions in incipient wetness impregnation and can eventually be applied to a variety of different metals. Results using this technique follow trends in oxygen vacancy concentration and surface oxygen content and show promise as a new method for quantifying support single atom stabilization capacity.

Key words: Ceria, Single-atom catalyst, Oxygen vacancies, CO2 hydrogenation, Redispersion