催化学报 ›› 2021, Vol. 42 ›› Issue (2): 310-319.DOI: 10.1016/S1872-2067(20)63644-0
收稿日期:
2020-03-17
接受日期:
2020-05-09
出版日期:
2021-02-18
发布日期:
2021-01-21
通讯作者:
王梅
基金资助:
Minglun Cheng, Xiongfei Zhang, Yong Zhu, Mei Wang*()
Received:
2020-03-17
Accepted:
2020-05-09
Online:
2021-02-18
Published:
2021-01-21
Contact:
Mei Wang
About author:
*Tel: +86-411-84986246; E-mail: symbueno@dlut.edu.cnSupported by:
摘要:
利用基于非贵金属的分子催化剂通过光驱动催化CO2还原生成CO是将太阳能储存为化学能和缓解CO2温室效应的有效途径之一, 具有重要的科学意义和潜在的应用前景. 已报道的非贵金属分子催化剂, 大多数对于光驱动CO2还原表现出缓慢的催化反应速率和/或对CO产物的低选择性, 反应常常伴随着质子还原产氢反应, 只有很少几种非贵金属分子催化剂对光催化CO2还原生成CO表现出高催化反应速率(> 100 h-1)和高选择性. 研究表明, 双核过渡金属配合物由于分子中邻近的两个金属中心的协同催化作用, 对于CO2还原生成CO的催化活性明显高于相应的单核配合物. 因此, 具有两个邻近的金属离子的非贵金属双核配合物有望作为CO2选择性还原的高效分子催化剂.
我们最近的研究发现, 具有刚性、共轭亚苯基二硫桥结构的[FeFe]-氢化酶模拟物[(μ-bdt)Fe2(CO)6] (1, bdt = 苯-1,2-二巯基)能够高活性、高选择性地光化学还原CO2至CO, 而与其类似的模拟物[(μ-edt)Fe2(CO)6] (2, edt = 乙烷-1,2-巯基)则不具有光催化还原CO2活性, 表明铁铁氢化酶模拟物中硫-硫桥的结构是影响模拟物的催化性能的重要结构因素之一. 可见光照射1/[Ru(bpy)3]2+/BIH (BIH = 1,3-二甲基-2-苯基-2,3-二氢-1H-苯并[d]-咪唑)体系4.5 h, 1催化生成CO的循环数(TON)为710, 在初始1 h的转化率(TOF)为7.12 min-1, CO的选择性达到97%, 内量子效率为2.8%. 有趣的是, 向体系中加入TEOA时可以调节1的催化选择性, 光化学反应能够在CO2还原产生CO和质子还原产生H2之间进行切换. 此外, 采用稳态荧光和瞬态吸收光谱研究了光催化体系中的电子转移, 提出可能的光催化反应机理. 该研究结果揭示了刚性硫-硫桥结构的氢化酶模拟物对光化学CO2还原至CO的特殊催化活性, 拓展了铁铁氢化酶模拟物的催化多功能性.
程明伦, 张雄飞, 朱勇, 王梅. 1,2-亚苯基二硫桥[FeFe]-氢化酶模拟物选择性光催化还原CO2至CO[J]. 催化学报, 2021, 42(2): 310-319.
Minglun Cheng, Xiongfei Zhang, Yong Zhu, Mei Wang. Selective photocatalytic reduction of CO2 to CO mediated by a [FeFe]-hydrogenase model with a 1,2-phenylene S-to-S bridge[J]. Chinese Journal of Catalysis, 2021, 42(2): 310-319.
Catalyst | Additive | CO (μmol) | H2 (μmol) | TON CO / H2 | CO selectivity (%) |
---|---|---|---|---|---|
1 | — | 25.6 | 0.07 | 256/0.7 | > 99 |
2 | — | 0.06 | 0.03 | 0.6/0.3 | — |
1 | 0.5 M CH3OH | 25.3 | 0.2 | 253/2 | > 99 |
1 | 1.5 M CH3OH | 38.9 | 2.5 | 389/25 | 94 |
1 | 2% TEOA | 9.8 | 12.4 | 98/124 | 44 |
1 | 20% TEOA | 0.9 | 102 | 9/1020 | < 2 |
Table 1 Photochemical CO2 reduction in the presence of 1 and 2 under different conditions.
Catalyst | Additive | CO (μmol) | H2 (μmol) | TON CO / H2 | CO selectivity (%) |
---|---|---|---|---|---|
1 | — | 25.6 | 0.07 | 256/0.7 | > 99 |
2 | — | 0.06 | 0.03 | 0.6/0.3 | — |
1 | 0.5 M CH3OH | 25.3 | 0.2 | 253/2 | > 99 |
1 | 1.5 M CH3OH | 38.9 | 2.5 | 389/25 | 94 |
1 | 2% TEOA | 9.8 | 12.4 | 98/124 | 44 |
1 | 20% TEOA | 0.9 | 102 | 9/1020 | < 2 |
Fig. 2. Time-dependent evolution of CO and H2 during photocatalytic CO2 reduction with the system of 1 (20 μM), [Ru(bpy)3](PF6)2 (0.2 mM), and BIH (20 mM), in dry CH3CN or CH3CN/CH3OH (1.5 M); the solution was saturated with CO2 and irradiated by visible light (λ > 420 nm).
Entry | [ (μM) | [{Ru(bpy)3}2+] (mM) | [BIH] (mM) | TONCO | TONH2 |
---|---|---|---|---|---|
1 | 20 | 0.2 | 20 | 255 | 0.7 |
2 | 0 | 0.2 | 20 | 0.7 | 1.2 |
3 | 20 | 0.2 | 0 | 1.5 | 0 |
4 | 20 | 0 | 20 | 0 | 0 |
5 a | 20 | 0.2 | 20 | 0 | 0 |
6 b | 20 | 0.2 | 20 | 0.3 | 0.8 |
Table 2 Control experiments under different conditions.
Entry | [ (μM) | [{Ru(bpy)3}2+] (mM) | [BIH] (mM) | TONCO | TONH2 |
---|---|---|---|---|---|
1 | 20 | 0.2 | 20 | 255 | 0.7 |
2 | 0 | 0.2 | 20 | 0.7 | 1.2 |
3 | 20 | 0.2 | 0 | 1.5 | 0 |
4 | 20 | 0 | 20 | 0 | 0 |
5 a | 20 | 0.2 | 20 | 0 | 0 |
6 b | 20 | 0.2 | 20 | 0.3 | 0.8 |
Fig. 3. (a) Mass spectrum of CO obtained from the system of 1 (20 μM), [Ru(bpy)3]2+ (0.2 mM), and BIH (20 mM) in 13CO2-saturated MeCN solution after 2 h of irradiation. (b) Time-dependent evolution of CO and H2 during the photocatalytic CO2 reduction with the systems of 1 (20 μM), [Ru(bpy)3]2+ (0.2 mM), and BIH (20 mM) in dry MeCN in the absence and presence of Hg (20 μL); the solutions were saturated with CO2 and irradiated by visible light.
Fig. 4. Time-dependent evolution of CO and H2 detected in the photocatalytic CO2 reduction carried out by the irradiation of the CO2-saturated CH3CN solution of 1 (20 μM), [Ru(bpy)3](PF6)2 (0.2 mM), and BIH (20 mM) containing 2% (v/v) (a) and 20% (v/v) (b) TEOA.
Fig. 5. (a) Time evolution of CO evolved from the system of [Ru(bpy)3]2+ (0.4 mM) and BIH (20 mM) with varied concentrations of 1 in CO2-saturated CH3CN/CH3OH (1.5 M) under irradiation (λ > 420 nm) over 3.5 h; (b) Plot of the CO evolution rate (kobs(CO)) versus [1] in the first 90 min of irradiation.
Fig. 6. Time-dependent evolution of CO and H2 from different photocatalytic systems. (a) 1 (20 μM) and BIH (20 mM) with varied concentration of [Ru(bpy)3]2+; (b) 1 (20 μM) and [Ru(bpy)3]2+ (0.6 mM) with varied concentration of BIH in CO2-saturated CH3CN/CH3OH (1.5 M) under irradiation.
Entry | [ (μM) | [{Ru(bpy)3}2+] (mM) | [BIH] (mM) | TON CO / H2 | TOFCO a (min-1) | CO selectivity (%) |
---|---|---|---|---|---|---|
1 | 5 | 0.4 | 20 | 464/9 | 5.16 | 98 |
2 | 10 | 0.4 | 20 | 549/42 | 5.16 | 93 |
3 | 20 | 0.4 | 20 | 557/36 | 4.63 | 94 |
4 | 20 | 0.2 | 20 | 395/27 | 3.54 | 94 |
5 | 20 | 0.6 | 20 | 556/23 | 6.73 | 96 |
6 | 20 | 0.6 | 40 | 710/21 | 7.12 | 97 |
Table 3 Results for the photocatalytic CO2 reduction with different concentrations of 1, [Ru(bpy)3]2+, and BIH.
Entry | [ (μM) | [{Ru(bpy)3}2+] (mM) | [BIH] (mM) | TON CO / H2 | TOFCO a (min-1) | CO selectivity (%) |
---|---|---|---|---|---|---|
1 | 5 | 0.4 | 20 | 464/9 | 5.16 | 98 |
2 | 10 | 0.4 | 20 | 549/42 | 5.16 | 93 |
3 | 20 | 0.4 | 20 | 557/36 | 4.63 | 94 |
4 | 20 | 0.2 | 20 | 395/27 | 3.54 | 94 |
5 | 20 | 0.6 | 20 | 556/23 | 6.73 | 96 |
6 | 20 | 0.6 | 40 | 710/21 | 7.12 | 97 |
Fig. 7. Plot of TONCO versus time for the photocatalytic system containing 1 (20 μM), [Ru(bpy)3]2+ (0.2 mM), and BIH (20 mM) in CO2-saturated CH3CN/CH3OH (1.5 M); after 150 min of irradiation when CO evolution ceased, 1 or [Ru(bpy)3]2+ equal to the initial quantity was added to the catalytic system.
Fig. 8. Phosphorescence spectra of [Ru(bpy)3]2+ (10 μM) in CH3CN containing different concentrations of 1 (a) or BIH (b), excited by monochromatic light at 450 nm. Kinetic traces of (c) transient bleaching recovery monitored at 450 nm for [Ru(bpy)3]2+ (5.0 × 10-5 M) only, [Ru(bpy)3]2+/1 (2.5 × 10-5 M), and [Ru(bpy)3]2+/BIH (2.0 × 10-4 M) and (d) transient decay monitored at 520 nm for [Ru(bpy)3]2+/BIH and [Ru(bpy)3]2+/BIH/1 in deoxygenated CH3CN solutions.
Fig. 9. Microsecond transient absorption spectra of [Ru(bpy)3]2+ (5.0 × 10-5 M), [Ru(bpy)3]2+ with BIH (2.0 × 10-4 M), and [Ru(bpy)3]2+ with BIH and 1 (2.5 × 10-5 M) in deoxygenated CH3CN solution.
|
[1] | 赵彬彬, 钟威, 陈峰, 王苹, 别传彪, 余火根. 高晶化g-C3N4光催化剂: 合成、结构调控和光催化产氢[J]. 催化学报, 2023, 52(9): 127-143. |
[2] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[3] | 蔡铭洁, 刘艳萍, 董珂欣, 陈晓波, 李世杰. 漂浮型Bi2WO6/C3N4/碳布S型异质结光催化材料用于高效净化水体环境[J]. 催化学报, 2023, 52(9): 239-251. |
[4] | 王思恺, 闵祥婷, 乔波涛, 颜宁, 张涛. 单原子催化: 追寻催化领域的“圣杯”[J]. 催化学报, 2023, 52(9): 1-13. |
[5] | 江梓聪, 程蓓, 张留洋, 张振翼, 别传彪. 氧化锌基梯型异质结光催化剂[J]. 催化学报, 2023, 52(9): 32-49. |
[6] | 邹心仪, 顾均. 酸性条件下二氧化碳高效电还原策略[J]. 催化学报, 2023, 52(9): 14-31. |
[7] | 刘博文, 蔡家杰, 张建军, 谭海燕, 程蓓, 许景三. MOF/CdS梯型光催化剂同时进行苯甲醇氧化和析氢反应及其机理研究[J]. 催化学报, 2023, 51(8): 204-215. |
[8] | 宋明明, 宋相海, 刘鑫, 周伟强, 霍鹏伟. ZnIn2S4/MOF-808微球结构S型异质结光催化剂的制备及其光还原CO2性能研究[J]. 催化学报, 2023, 51(8): 180-192. |
[9] | 邵秀丽, 李可, 李静萍, 程强, 王国宏, 王楷. 揭示NiS@Ta2O5纳米纤维中梯型电荷转移路径及光催化CO2转化性能[J]. 催化学报, 2023, 51(8): 193-203. |
[10] | 李嘉明, 李源, 王小田, 杨直雄, 张高科. TiO2上原子分散的Fe位点促进光催化CO2还原: 增强的催化活性、 DFT计算和机制洞察[J]. 催化学报, 2023, 51(8): 145-156. |
[11] | 阎菲, 张由子, 刘思碧, 邹睿卿, Jahan B Ghasemi, 李炫华. 供体-受体型卟啉基金属有机框架实现有效电荷分离高效光催化析氢[J]. 催化学报, 2023, 51(8): 124-134. |
[12] | 孙利娟, 王伟康, 路平, 刘芹芹, 王乐乐, 唐华. 纳米高熵合金实现光催化剂肖特基势垒的调控用于光催化制氢与苯甲醇氧化耦合反应[J]. 催化学报, 2023, 51(8): 90-100. |
[13] | 刘海峰, 黄祥, 陈加藏. 电子态调控促进氢气无损耗纯化中CO的光致富集和氧化[J]. 催化学报, 2023, 51(8): 49-54. |
[14] | 袁鑫, 范海滨, 刘杰, 覃龙州, 王剑, 段秀, 邱江凯, 郭凯. 连续流技术在光氧化还原催化转化的最新进展[J]. 催化学报, 2023, 50(7): 175-194. |
[15] | 余治晗, 关晨, 岳晓阳, 向全军. 碳环渗入的结晶氮化碳S型同质结及其光催化析氢[J]. 催化学报, 2023, 50(7): 361-371. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||