催化学报 ›› 2021, Vol. 42 ›› Issue (1): 152-163.DOI: 10.1016/S1872-2067(20)63593-8

• 论文 • 上一篇    下一篇

二维介孔超薄Cd0.5Zn0.5S纳米片: 形成机制及光催化分解水制氢性能

薛文华a, 常文茜a, 胡晓云b, 樊君a,#(), 刘恩周a,*()   

  1. a西北大学化工学院, 陕西西安710069
    b西北大学物理学院, 陕西西安710069
  • 收稿日期:2020-02-17 接受日期:2020-03-31 出版日期:2021-01-18 发布日期:2021-01-18
  • 通讯作者: 樊君,刘恩周
  • 基金资助:
    国家自然科学基金(21676213);国家自然科学基金(21476183);国家自然科学基金(11974276);国家自然科学基金(51372201);中国博士后科学基金(2016M600809);陕西省自然科学基础研究计划(2017JM2026);陕西省自然科学基础研究计划(2018JM5020)

2D mesoporous ultrathin Cd0.5Zn0.5S nanosheet: Fabrication mechanism and application potential for photocatalytic H2 evolution

Wenhua Xuea, Wenxi Changa, Xiaoyun Hub, Jun Fana,#(), Enzhou Liua,*()   

  1. aSchool of Chemical Engineering, Northwest University, Xi’an 710069, Shaanxi, China
    bSchool of Physics, Northwest University, Xi’an 710069, Shaanxi, China
  • Received:2020-02-17 Accepted:2020-03-31 Online:2021-01-18 Published:2021-01-18
  • Contact: Jun Fan,Enzhou Liu
  • About author:#E-mail: fanjun@nwu.edu.cn
    *Tel: +86-13759963944; E-mail: liuenzhou@nwu.edu.cn;
  • Supported by:
    National Natural Science Foundation of China(21676213);National Natural Science Foundation of China(21476183);National Natural Science Foundation of China(11974276);National Natural Science Foundation of China(51372201);China Postdoctoral Science Foundation(2016M600809);Natural Science Basic Research Plan in Shaanxi Province of China(2017JM2026);Natural Science Basic Research Plan in Shaanxi Province of China(2018JM5020)

摘要:

太阳光驱动的光催化分解水产氢是一种绿色制氢技术, 并以氢为载体可实现太阳能向化学能的转化. 目前开发高效、稳定的可见光催化剂仍是本领域的研究热点. 在各类光催化材料中, Cd0.5Zn0.5S固溶体比TiO2及g-C3N4具有更优异的光催化产氢活性, 但它一般为团聚了的纳米颗粒或纳米微球, 表面积小, 比表面反应迟缓, 从而限制了其实际应用. 通常, 超薄多孔二维结构光催化剂具有高比表面积, 能够为反应物分子与催化剂之间提供大量接触界面并促进传质, 此外, 特定晶面暴露赋予了其大量不饱和配位表面原子, 使反应物分子更容易在催化剂表面吸附活化, 提升表面催化反应动力学. 本文首先采用乙二胺与水的混合溶液制备了无机有机杂化的硫化锌-乙二胺(记为:ZnS(en)0.5). 随后, 分别以ZnS(en)0.5为硬模板、以乙二醇为反应介质、氯化镉为镉源, 通过溶剂热阳离子交换得到了无机有机杂化的Cd0.5Zn0.5S(en)x中间产物. 最后, 将Cd0.5Zn0.5S(en)x在纯水中进行水热反应脱除晶格内乙二胺分子得到了2D介孔超薄Cd0.5Zn0.5S纳米片. TEM测试发现, 纳米片表面存在大量孔洞, 其主要源于Cd0.5Zn0.5S(en)x的相变过程及其晶格内乙二胺分子的逃逸导致的晶格畸变. AFM观察结果表明, 最终产物Cd0.5Zn0.5S纳米片厚度约为1.5 nm; 其比表面积可达63.5 m2/g, 几乎是相应纳米颗粒的两倍. 以三乙醇胺(TEOA)为牺牲剂时, Cd0.5Zn0.5S纳米片的产氢速率达到19.1 mmol·h-1·g-1, 是相应纳米颗粒的两倍多. 即使在纯水中, Cd0.5Zn0.5S纳米片产氢速率仍可达到1395 μmol·h-1·g-1, 超过了目前所报道的未加修饰的光催化剂的活性. 其优异的活性源于其独特的结构优势, 包括载流子迁移距离的缩短、表面不饱合原子及比表面积的增大. 但在纯水中其严重的光腐蚀仍然亟待克服. 此外, 为进一步增强其活性, 通过机械复合的方法得到了NiCo2S4/Cd0.5Zn0.5S二元复合光催化剂, 其在TEOA为牺牲剂时制氢速率可达62.2 mmol·h-1·g-1, 在纯水制氢速率达到2436 μmol·h -1·g-1. 电化学、UPS及EPR分析表明, NiCo2S4与Cd0.5Zn0.5S纳米片间形成了肖特基接触, 进一步促进了载流子分离能力, 提高了复合物的产氢活性. 以本工作为基础, 还可制备其他高活性的CdZnS-基功能光催化材料用于太阳能转化或其他领域.

关键词: 介孔, 超薄, Cd0.5Zn0.5S纳米片, 光催化, 产氢

Abstract:

Two-dimensional mesoporous ultrathin Cd0.5Zn0.5S nanosheets with a thickness of ~1.5 nm were fabricated using a multistep chemical transformation strategy involving inorganic-organic hybrid ZnS-ethylenediamine (denoted as ZnS(en)0.5) as a hard template. Inorganic-organic hybrid ZnS(en)0.5, Cd0.5Zn0.5S(en)x, and Cd0.5Zn0.5S nanosheets were sequentially fabricated, and their transformation processes were analyzed in detail. The fabricated Cd0.5Zn0.5S nanosheets exhibited high photocatalytic hydrogen evolution reaction activity in the presence of a sacrificial agent. The Cd0.5Zn0.5S nanosheets exhibited remarkably high H2 production activity of ~1395 μmol∙h-1∙g-1 in pure water with no co-catalyst, which is the highest value reported thus far for bare photocatalysts, to the best of our knowledge. The high activity of these nanosheets is attributed to their distinct nanostructure (e.g., short transfer distance of photoinduced charge carriers, large number of unsaturated surface atoms, and large surface area). Moreover, ternary NiCo2S4 nanoparticles were employed to facilitate the charge separation and enhance the surface kinetics of H2 evolution. The H2 production rate reached ~62.2 and ~2436 μmol∙h-1∙g-1 in triethanolamine and pure water, respectively, over the NiCo2S4/Cd0.5Zn0.5S heterojunctions. The result indicated that the Schottky junction was critical to the enhanced activity. The proposed method can be used for fabricating other highly efficient CdZnS-based photocatalysts for solar-energy conversion or other applications.

Key words: Mesoporous, Ultrathin, Cd0.5Zn0.5S nanosheets, Photocatalysis, Hydrogen evolution