催化学报 ›› 2021, Vol. 42 ›› Issue (1): 184-192.DOI: 10.1016/S1872-2067(20)63588-4

• 论文 • 上一篇    下一篇

利用局域光效应增强全光谱光催化的ZnO/PVDF反蛋白石结构薄膜

陈雨凯a,b,c, 汪雨d, 方姣姣a,b,c, 代宝莹a,b,c, 寇佳慧a,b,c,*, 陆春华a,b,c,#, 赵远锦d,$   

  1. a南京工业大学材料科学与工程学院, 江苏南京210009
    b南京工业大学江苏省先进无机功能复合材料协同创新中心, 江苏南京210009
    c南京工业大学江苏省先进材料协同创新中心, 江苏南京210009
    d东南大学生物科学与医学工程学院, 生物电子国家重点实验室, 江苏南京210096
  • 收稿日期:2020-02-23 接受日期:2020-04-10 出版日期:2021-01-18 发布日期:2021-01-18
  • 通讯作者: 寇佳慧,陆春华,赵远锦
  • 作者简介:第一联系人: 共同第一作者.
  • 基金资助:
    国家自然科学基金(51872138);江苏省自然科学基金(BK20181380);江苏省自然科学基金(BK20150919);江苏省博士后基金(1302096C);江苏省重点大学科研项目(15KJB430022);江苏省六大人才高峰工程(XCL-029);江苏高校优势学科建设工程项目

Design of a ZnO/Poly(vinylidene fluoride) inverse opal film for photon localization-assisted full solar spectrum photocatalysis

Yukai Chena,b,c, Yu Wangd, Jiaojiao Fanga,b,c, Baoying Daia,b,c, Jiahui Koua,b,c,*, Chunhua Lua,b,c,#, Yuanjin Zhaod,$   

  1. aState Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, Jiangsu, China
    bJiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, Jiangsu, China
    cJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, Jiangsu, China
    dState Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, China
  • Received:2020-02-23 Accepted:2020-04-10 Online:2021-01-18 Published:2021-01-18
  • Contact: Jiahui Kou,Chunhua Lu,Yuanjin Zhao
  • About author:$E-mail: yjzhao@seu.edu.cn
    #E-mail: chhlu@njtech.edu.cn;
    *E-mail: jhkou@njtech.edu.cn;
    First author contact: These authors contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(51872138);Natural Science Foundation of Jiangsu Province(BK20181380);Natural Science Foundation of Jiangsu Province(BK20150919);Jiangsu Province Postdoctoral Fund(1302096C);Key University Science Research Project of Jiangsu Province(15KJB430022);Qing Lan Project, Six Talent Peaks Project in Jiangsu Province(XCL-029);Priority Academic Program Development of the Jiangsu Higher Education Institutions (PAPD) is gratefully acknowledged

摘要:

随着环境污染与能源危机的问题日益严重, 利用清洁能源太阳能的光催化技术得到了研究者的广泛关注. 然而, 半导体光催化剂的带隙严重限制了其利用整个太阳光谱的能力. 尽管通过能带工程、上转换等技术, 已经有部分可见光可以被利用, 但其本身的效率却并不高. 太阳光谱中的近红外光有着显著的光热效应, 可提高光催化反应的温度, 促进光生载流子的分离, 进而提升光催化的效果. 光子晶体是一种周期性结构, 通过调节其折射率以及孔径大小, 可以对不同波段的光实现增强吸收或反射的效果. 人们已制备了二氧化钛的反蛋白石结构用于光催化降解污染物, 其光催化效率明显提高. 但是, 通过利用反蛋白石结构光子晶体增强近红外光的吸收, 进而实现全光谱利用的光热协同催化目前还未有报道.
本文以二氧化硅单分散微球为模板, 制备了以苯胺黑-聚偏氟乙烯为基底、氧化锌为光催化剂的反蛋白石结构光子晶体薄膜, 采用扫描电镜、XRD和XPS等技术表征了薄膜的结构, 并通过透射光谱与镜面反射光谱验证了苯胺黑的加入可增强全光谱的利用率. 结果发现, 当苯胺黑掺量为0.5%时, 微反应器中的薄膜温度在60 min内上升了13.6 °C, 而空气中的薄膜温度在2 min内升了24.5 °C, 表明苯胺黑在近红外光生热中起着重要作用. 对比普通薄膜, Z0.5A-369在微反应器与空气中的温度分别提升了14.7和26.8 °C, 证实了光子晶体对于光谱吸收的增强效应. 就光催化性能来看, Z0.5A-369比普通薄膜的效率提高了1.63倍, 而微反应器也比普通反应器提升了5.85倍. 可见, 薄膜和反应器的设计实现了协同催化.
光热协同光催化发现, 利用近红外光的光热效应来提高光催化反应过程中的温度可有效促进光催化反应, 是一种高效利用太阳光谱的方法. 光子晶体因其多孔结构、高比表面积、限光效应和慢光效应而增强了对光的吸收, 进一步提高了光催化效率. 另外, 微反应器通过其局域的热效应和缩短的传质路径有效地增加了反应速率.

关键词: 光催化, 光子晶体, 反蛋白石结构, 微反应器, 氧化锌

Abstract:

Owing to its photonic band gap (PBG) and slow light effects, aniline black (AB)-poly(vinylidene fluoride) (PVDF) inverse opal (IO) photonic crystal (PC) was constructed to promote the utility of light and realize photothermal synergetic catalysis. As a highly efficient reaction platform with the capability of restricting heat, a microreactor was introduced to further amplify the photothermal effects of near infrared (NIR) radiation. The photocatalytic efficiency of ZnO/0.5AB-PVDF IO (Z0.5A) increases 1.63-fold compared to that of pure ZnO film under a full solar spectrum, indicating the effectiveness of synergetic promotion by slow light and photothermal effects. Moreover, a 5.85-fold increase is achieved by combining Z0.5A with a microreactor compared to the film in a beaker. The photon localization effect of PVDF IO was further exemplified by finite-difference time-domain (FDTD) calculations. In conclusion, photonic crystal-microreactor enhanced photothermal catalysis has immense potential for alleviating the deteriorating water environment.

Key words: Photothermal catalysis, Photonic crystal, Inverse opal, Microreactor, ZnO