催化学报 ›› 2021, Vol. 42 ›› Issue (10): 1625-1633.DOI: 10.1016/S1872-2067(21)63798-1

• 述评 •    下一篇

酶复合催化剂原位合成新方法及生物催化应用

曹宇飞a, 戈钧a,b()   

  1. a清华大学化学工程系工业生物催化教育部重点实验室, 北京100084
    b清华大学深圳国际研究生院生物医药与健康工程研究院, 广东深圳518055
  • 收稿日期:2021-02-07 接受日期:2021-03-04 出版日期:2021-06-20 发布日期:2021-04-25
  • 通讯作者: 戈钧
  • 作者简介:*电话: (010)62780775; 电子信箱:junge@mail.tsinghua.edu.cn
  • 基金资助:
    北京市自然科学基金(JQ18006);国家重点研发计划(2016YFA0204300);国家自然科学基金(21622603);国家自然科学基金(21878174);国家自然科学基金(21911540467)

Hybrid enzyme catalysts synthesized by a de novo approach for expanding biocatalysis

Yufei Caoa, Jun Gea,b()   

  1. aKey Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
    bInstitute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong, China
  • Received:2021-02-07 Accepted:2021-03-04 Online:2021-06-20 Published:2021-04-25
  • Contact: Jun Ge
  • About author:Professor Jun Ge (Department of Chemical Engineering, Tsinghua University) received his B.S. degree in 2004 and Ph.D degree in 2009 from Tsinghua University. From 2009 to 2012, he did postdoctoral research at Stanford University. In 2012, he joined the faculty of Department of Chemical Engineering, Tsinghua University. His research interests currently focus on enzymatic catalysis and enzyme-metal cooperative catalysis with emphasis on design of new biocatalysts, enzyme catalyst engineering and asymmetric synthesis of pharmaceutical intermediates and fine chemicals by biocatalysis. Some of his recent progresses include the design of novel hybrid catalyst to combine lipase and Pd clusters to achieve the dynamic kinetic resolution of amines, the novel approach of enzymatic catalysis in cells to achieve the detection of specific intracellular metabolites in single cells. He has coauthored about 60 peer-reviewed papers, some of which were published in Nature Catalysis, Nature Nanotechnology, Science Advances, Nature Communications, etc. He has been issued with 10 patents. He joined the editorial board of Chin. J. Catal. as the Associate Editor in 2020.
  • Supported by:
    Beijing Natural Science Foundation(JQ18006);National Key Research and Development Plan of China(2016YFA0204300);National Natural Science Foundation of China(21622603);National Natural Science Foundation of China(21878174);National Natural Science Foundation of China(21911540467)

摘要:

工业生物催化面临两大重要挑战, 一是可工业应用的酶催化反应类型仍然比较有限, 远少于化学催化剂, 因此需要拓展酶催化的反应类型; 二是酶在苛刻的工业催化反应条件下尤其是在高温、有机溶剂、不适宜的pH等环境下稳定性较差, 因此需要提高工业酶催化剂的稳定性. 研究者已经开发了很多方法, 以解决这两方面难题, 例如酶的定向进化、定点突变、酶的计算机从头设计和构建人工金属酶等.
本文系统介绍了本课题组开发的酶复合催化剂原位合成方法及其生物催化应用, 期望为解决工业生物催化的上述挑战提供新思路. 原位合成是构建酶-无机晶体复合催化剂的一种简便、高效、普适的方法. 酶-无机晶体复合物中, 限域包埋使酶具有高于常规固定化酶的催化活性和稳定性. 该方法可以简便拓展至其它多种类型的无机晶体材料, 显著提高酶的稳定性. 无机晶体的限域包埋对酶分子结构和性能有着重要影响, 通过理性设计复合催化剂的结构, 可实现对酶的活性、稳定性以及多酶反应级联效率的有效调控. 本课题组采用分子模拟和实验相结合的方法阐释了多酶-无机晶体复合催化剂所驱动的级联反应效率提高的关键因素. 通过调控原位合成中金属离子和有机配体的浓度, 实现了酶分子在缺陷型甚至无定形载体中的包埋. 在此基础上, 深入探讨了缺陷对酶分子结构和催化活性的调控机制, 为酶复合催化剂的理性设计提供了依据.
同样基于原位合成方法, 本课题组构建了酶-金属团簇复合催化剂, 实现了温和条件下酶催化和金属催化的高效耦合和协同. 以脂肪酶-钯团簇复合催化剂为例, 阐明了酶-金属团簇复合催化剂中二者相互作用对酶分子结构和活性以及金属催化活性的影响机制, 为酶催化和金属催化相融合的研究提供了重要基础. 我们对这一领域存在的挑战和未来重要的研究方向也进行了讨论, 希望本文可以从催化剂工程角度为高效酶催化剂的设计以及生物催化应用领域的拓展提供新思路, 推动该领域发展.

关键词: 生物催化, 原位合成, 复合酶催化剂, 构效关系, 理性设计

Abstract: The two major challenges in industrial enzymatic catalysis are the limited number of chemical reaction types that are catalyzed by enzymes and the instability of enzymes under harsh conditions in industrial catalysis. Expanding enzyme catalysis to a larger substrate scope and greater variety of chemical reactions and tuning the microenvironment surrounding enzyme molecules to achieve high enzyme performance are urgently needed. In this account, we focus on our efforts using the de novo approach to synthesis hybrid enzyme catalysts that can address these two challenges and the structure-function relationship is discussed to reveal the principles of designing hybrid enzyme catalysts. We hope that this account will promote further efforts toward fundamental research and wide applications of designed enzyme hybrid catalysts for expanding biocatalysis.

Key words: Expanding biocatalysis, In situ synthesis, Hybrid enzyme catalysts, Structure-function relationship, Rational design