催化学报 ›› 2022, Vol. 43 ›› Issue (1): 92-103.DOI: 10.1016/S1872-2067(21)63838-X

• 综述 • 上一篇    下一篇

固态氧化物电解池中碳一分子电化学转化为可再生燃料

吕希蒙, 陈锰寰, 谢朝龙, 钱林平, 张丽娟, 郑耿锋*()   

  1. 复旦大学先进材料实验室, 化学与材料学院, 化学系, 上海市分子催化和功能材料重点实验室, 上海200438
  • 收稿日期:2021-04-10 接受日期:2021-04-23 出版日期:2022-01-18 发布日期:2021-05-18
  • 通讯作者: 郑耿锋
  • 基金资助:
    国家重点研究和发展项目(2018YFA0209401);国家重点研究和发展项目(2017YFA0206901);国家科学基金(22025502);国家科学基金(21975051);国家科学基金(21773036);上海市科学技术委员会资助项目(19XD1420400);上海市教育委员会资助项目(2019-01-07-00-07-E00045)

Electrochemical conversion of C1 molecules to sustainable fuels in solid oxide electrolysis cells

Ximeng Lv, Menghuan Chen, Zhaolong Xie, Linping Qian, Lijuan Zhang, Gengfeng Zheng*()   

  1. Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai 200438, China
  • Received:2021-04-10 Accepted:2021-04-23 Online:2022-01-18 Published:2021-05-18
  • Contact: Gengfeng Zheng
  • About author:* E-mail: gfzheng@fudan.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2018YFA0209401);National Key Research and Development Program of China(2017YFA0206901);National Science Foundation of China(22025502);National Science Foundation of China(21975051);National Science Foundation of China(21773036);Science and Technology Commission of Shanghai Municipality(19XD1420400);Shanghai Municipal Education Commission(2019-01-07-00-07-E00045)

摘要:

近年来, 随着社会环保意识的迅速提高以及对可再生能源利用能力的大幅增强, 以燃料电池和电解池为代表的电化学技术已经逐渐在能源的存储、转化和利用方面发挥着不可或缺的独特作用. 其中, 固态氧化物电解池经过多年的发展, 在装置成本和工作效率上取得了长足的进步, 在储能转化方面具有重要的潜力. 与此同时, 伴随着《巴黎协定》签订以来各国的“碳中和”路线图逐渐出台, 利用相对廉价易得的可再生电能, 将二氧化碳(CO2)和甲烷(CH4)等碳一(C1)分子电解转化为高附加值的可再生燃料(如水煤气、乙烯等), 对于碳中和目标的实现具有重要的意义. 因此, C1分子电化学转化的研究成为了当下重点关注的研究领域, 许多重要的研究成果和技术进步在过去几年中不断涌现. 固态氧化物电解池作为一种代表性的C1分子电解和转化平台, 也日渐引起相关领域研究人员的关注和兴趣. 与传统的C1分子催化转化方法相比, 基于固态氧化物电解池的电解转化技术具有两个重要优点: 高能量转换效率与体系抗中毒能力. 这两个特性作为体系稳健性的基石, 保障了C1分子转化为可再生燃料的反应过程的长期可持续性.
本文首先简要回顾了固态氧化物电解池的前沿技术与发展, 并从电解池系统分类、反应体系的特征和反应体系发展的前景与挑战这三个方面, 简要介绍了近年来基于固态氧化物电解池体系的C1分子电化学转化的代表性工作. CO2与CH4作为廉价易得的C1分子的代表, 其转化因其反应分子惰性及反应过程不可控性而广受研究者关注, 本文重点关注了在固态氧化物电解池中CO2, CO2/H2O和CH4三个体系的电化学反应过程和近期研究进展, 希望可为相关研究人员未来设计更合适的催化剂和构建更优的电解池结构提供有益的参考. 本文还针对目前固态氧化物电解池体系在C1分子转化领域所面临的挑战, 提出了未来的一些可能的研究方向, 以期助力研究者在不远的将来实现C1分子电解生产可再生燃料的实用化.

关键词: 固态氧化物电解池, 碳一分子, 电解, 甲烷转化, 二氧化碳转化

Abstract:

Stimulated by increasing environmental awareness and renewable-energy utilization capabilities, fuel cell and electrolyzer technologies have emerged to play a unique role in energy storage, conversion, and utilization. In particular, solid oxide electrolysis cells (SOECs) are increasingly attracting the interest of researchers as a platform for the electrolysis and conversion of C1 molecules, such as carbon dioxide and methane. Compared to traditional catalysis methods, SOEC technology offers two major advantages: high energy efficiency and poisoning resistance, ensuring the long-term robustness of C1-to-fuels conversion. In this review, we focus on state-of-the-art technologies and introduce representative works on SOEC-based techniques for C1 molecule electrochemical conversion developed over the past several years, which can serve as a timely reference for designing suitable catalysts and cell processes for efficient and practical conversion of C1 molecules. The challenges and prospects are also discussed to suggest possible research directions for sustainable fuel production from C1 molecules by SOECs in the near future.

Key words: Solid oxide electrolysis cells, C1 molecules, Electrolysis, Methane conversion, CO2 conversion