催化学报 ›› 2022, Vol. 43 ›› Issue (1): 92-103.DOI: 10.1016/S1872-2067(21)63838-X
吕希蒙, 陈锰寰, 谢朝龙, 钱林平, 张丽娟, 郑耿锋*()
收稿日期:
2021-04-10
接受日期:
2021-04-23
出版日期:
2022-01-18
发布日期:
2021-05-18
通讯作者:
郑耿锋
基金资助:
Ximeng Lv, Menghuan Chen, Zhaolong Xie, Linping Qian, Lijuan Zhang, Gengfeng Zheng*()
Received:
2021-04-10
Accepted:
2021-04-23
Online:
2022-01-18
Published:
2021-05-18
Contact:
Gengfeng Zheng
About author:
* E-mail: gfzheng@fudan.edu.cnSupported by:
摘要:
近年来, 随着社会环保意识的迅速提高以及对可再生能源利用能力的大幅增强, 以燃料电池和电解池为代表的电化学技术已经逐渐在能源的存储、转化和利用方面发挥着不可或缺的独特作用. 其中, 固态氧化物电解池经过多年的发展, 在装置成本和工作效率上取得了长足的进步, 在储能转化方面具有重要的潜力. 与此同时, 伴随着《巴黎协定》签订以来各国的“碳中和”路线图逐渐出台, 利用相对廉价易得的可再生电能, 将二氧化碳(CO2)和甲烷(CH4)等碳一(C1)分子电解转化为高附加值的可再生燃料(如水煤气、乙烯等), 对于碳中和目标的实现具有重要的意义. 因此, C1分子电化学转化的研究成为了当下重点关注的研究领域, 许多重要的研究成果和技术进步在过去几年中不断涌现. 固态氧化物电解池作为一种代表性的C1分子电解和转化平台, 也日渐引起相关领域研究人员的关注和兴趣. 与传统的C1分子催化转化方法相比, 基于固态氧化物电解池的电解转化技术具有两个重要优点: 高能量转换效率与体系抗中毒能力. 这两个特性作为体系稳健性的基石, 保障了C1分子转化为可再生燃料的反应过程的长期可持续性.
本文首先简要回顾了固态氧化物电解池的前沿技术与发展, 并从电解池系统分类、反应体系的特征和反应体系发展的前景与挑战这三个方面, 简要介绍了近年来基于固态氧化物电解池体系的C1分子电化学转化的代表性工作. CO2与CH4作为廉价易得的C1分子的代表, 其转化因其反应分子惰性及反应过程不可控性而广受研究者关注, 本文重点关注了在固态氧化物电解池中CO2, CO2/H2O和CH4三个体系的电化学反应过程和近期研究进展, 希望可为相关研究人员未来设计更合适的催化剂和构建更优的电解池结构提供有益的参考. 本文还针对目前固态氧化物电解池体系在C1分子转化领域所面临的挑战, 提出了未来的一些可能的研究方向, 以期助力研究者在不远的将来实现C1分子电解生产可再生燃料的实用化.
吕希蒙, 陈锰寰, 谢朝龙, 钱林平, 张丽娟, 郑耿锋. 固态氧化物电解池中碳一分子电化学转化为可再生燃料[J]. 催化学报, 2022, 43(1): 92-103.
Ximeng Lv, Menghuan Chen, Zhaolong Xie, Linping Qian, Lijuan Zhang, Gengfeng Zheng. Electrochemical conversion of C1 molecules to sustainable fuels in solid oxide electrolysis cells[J]. Chinese Journal of Catalysis, 2022, 43(1): 92-103.
Fig. 1. (a) Annual total CO2 emissions data since 1750 (by region); (b) Schematic for sustainable industrial chain toward C1-to-fuel process; (c) Research topics in SOEC-related studies since 2000; (d) Number of citations on SOEC-related publications. Inset: the number of SOEC-related papers published since 2000.
Fig. 2. (a) Model of MEA for a typical SOEC: the fuel electrode in red color, support layer in blue color, oxygen electrode in yellow color, and reaction barrier in green color. (b) Schematic of the triple-phase-boundary at cathode: the electronic conductor phase in yellow color, oxygen ion conductor phase in grey color, and gas phase in white color. (c) Schematic of charge transfer process in OC-SOEC and PC-SOEC (PCEC), respectively. (d) Comparison of the bulk conductivity of Ba7Nb4MoO20 (i.e., black dot-line in dry air and grey dot-line in Air/H2O) with other leading ionic conductors. (e) Perovskite oxide (ABO3) crystal structure. Figure (d) was reprinted with permission from Ref. [17] Copyright 2020 Springer Nature.
Reaction | ΔH°298K (kJ·mol-1) | ΔS°298K (J·mol-1·K-1) |
---|---|---|
CO2 = CO + 1/2O2 | 283 | 86.5 |
2CO = C + CO2 | -173 | -176 |
CO2 + H2O = CO + H2 + O2 | 569 | 250 |
CO + H2O = CO2 + H2 | 2.83 | 76.8 |
CH4 + H2O = CO + 3H2 | 206 | 338 |
CH4 + CO2 = 2CO + 2H2 | 247 | 257 |
CH4 + CO2 = C2H4 + 2H2O | -51.2 | -40.9 |
Table 1 Thermodynamic data for representative C1 chemical reactions in SOECs [27].
Reaction | ΔH°298K (kJ·mol-1) | ΔS°298K (J·mol-1·K-1) |
---|---|---|
CO2 = CO + 1/2O2 | 283 | 86.5 |
2CO = C + CO2 | -173 | -176 |
CO2 + H2O = CO + H2 + O2 | 569 | 250 |
CO + H2O = CO2 + H2 | 2.83 | 76.8 |
CH4 + H2O = CO + 3H2 | 206 | 338 |
CH4 + CO2 = 2CO + 2H2 | 247 | 257 |
CH4 + CO2 = C2H4 + 2H2O | -51.2 | -40.9 |
Fig. 3. (a) The Arrhenius plots of the area specific resistance (EaASR) and polarization resistance (EaRp) from the (La0.75Sr0.25)0.97Cr0.5Mn0.5O3-δ/GDC cathode at open-circuit voltages over a range of operating temperatures in CO2/CO (70/30) atmosphere. EaR1 and EaR2 referred to high-frequency and low-frequency polarization resistances, respectively. (b) Temperature-programmed desorption (TPD) curves of CO2 on (La0.2Sr0.8)0.95Ti0.65-xMn0.35CuxO3-δ surface, measured in the temperature range of 200 to 950 °C; (c) I-V curves of (La0.2Sr0.8)0.95Ti0.65-xMn0.35CuxO3-δ-based SOECs at 800 °C; (d) Measured outlet pCO (balance CO2) and cell overpotential corrected for iRΩ at increasing applied current densities. The dashed vertical line was the thermodynamic threshold of carbon deposition via the Boudouard reaction. Inset: Typical electrolysis current-voltage curve measured on a cell with ceria negative electrode; (e) Selected data in (d), now shown as a function of time at two of the final operating points (fixed current densities: 0.35 A·cm-2 for the ceria cell and 0.5 A·cm-2 for the Ni-YSZ cell). (f) Illustrations of the two cell types and post-test cross-sectional scanning electron microscopy images at the gas outlet near the negative electrode/electrolyte interfaces, where carbon was deposited in the Ni-YSZ electrode and caused interface delamination. Fig. (a) was reprinted with permission from Ref. [37]. Copyright 2012 The electrochemical society (IOP Publishing). Figs. (b,c) were reprinted with permission from Ref. [42]. Copyright 2020 Elsevier. Figs. (d,e,f) were reprinted with permission from Ref. [48]. Copyright 2019 Springer Nature.
Cell configuration | Performance | Ref. |
---|---|---|
Anode: La0.8Sr0.2MnO3-δ, Cathode: (La0.2Sr0.8)0.95Ti0.65-xMn0.35CuxO3-δ Electrolyte: LSGM | 2.33 A·cm-2 at 1.8 V (1073 K) Feed stock: CO2 | [ |
Anode: (La0.60Sr0.40)0.95Co0.20Fe0.80O3-δ-GDC Cathode: Fe/MnOx on (Pr,Ba)2Mn2-yFeyO5+δ Electrolyte: YSZ | 0.638 A·cm-2 at 1.6 V (1123 K) Feed stock: CO2 | [ |
Anode: Sr2Fe1.3Co0.2Mo0.5O6-δ Cathode: Sr2Fe1.3Co0.2Mo0.5O6-δ Electrolyte: LSGM | 2.12 A·cm-2 at 1.4 V (1123 K) Feed stock: CO2-CO (1:1) | [ |
Anode: NiO-YSZ Cathode: LaCo0.6Ni0.4O3-δ-GDC Electrolyte: YSZ | 2.316 A·cm-2 at 2.0 V (1073 K) Feed stock: CO2 | [ |
Anode: Sm1-xCaxFe1-yCuyO3-δ Cathode: La0.8Sr0.2MnO3-δ-GDC Electrolyte: SSZ | 1.20 A·cm-2 at 1.5 V (1073 K) Feed stock: CO2 | [ |
Table 2 Representative materials researches on SOEC-based CO2 electrolysis in 2020.
Cell configuration | Performance | Ref. |
---|---|---|
Anode: La0.8Sr0.2MnO3-δ, Cathode: (La0.2Sr0.8)0.95Ti0.65-xMn0.35CuxO3-δ Electrolyte: LSGM | 2.33 A·cm-2 at 1.8 V (1073 K) Feed stock: CO2 | [ |
Anode: (La0.60Sr0.40)0.95Co0.20Fe0.80O3-δ-GDC Cathode: Fe/MnOx on (Pr,Ba)2Mn2-yFeyO5+δ Electrolyte: YSZ | 0.638 A·cm-2 at 1.6 V (1123 K) Feed stock: CO2 | [ |
Anode: Sr2Fe1.3Co0.2Mo0.5O6-δ Cathode: Sr2Fe1.3Co0.2Mo0.5O6-δ Electrolyte: LSGM | 2.12 A·cm-2 at 1.4 V (1123 K) Feed stock: CO2-CO (1:1) | [ |
Anode: NiO-YSZ Cathode: LaCo0.6Ni0.4O3-δ-GDC Electrolyte: YSZ | 2.316 A·cm-2 at 2.0 V (1073 K) Feed stock: CO2 | [ |
Anode: Sm1-xCaxFe1-yCuyO3-δ Cathode: La0.8Sr0.2MnO3-δ-GDC Electrolyte: SSZ | 1.20 A·cm-2 at 1.5 V (1073 K) Feed stock: CO2 | [ |
Fig. 4. (a) Schematic of a sustainable fuels generator consist of a SOEC stack and a Fischer-Tropsch synthesis reactor. (b) Polarization curves for H2O electrolysis, H2O/CO2 co-electrolysis versus CO2 electrolysis with mean area specific resistance values. (c) Oxygen evolution from powdered ferrite perovskite catalyst during heat treatment under helium. (d) I-V curve of a La0.7Sr0.3MnO3-YSZ (anode)/YSZ/La0.7Sr0.2Ni0.1Co0.1Fe0.8O3 (cathode) cell under 40% CO2 and different H2O concentrations on the cathode side at 1073 K in SOEC mode. (e) Cell voltage and Faradaic efficiency during a long-term co-electrolysis test with a La0.7Sr0.3MnO3-YSZ (anode)/YSZ/La0.7Sr0.2Ni0.1Co0.1Fe0.8O3 (cathode) cell at 1073 K using a cathode feed of 40% CO2 + 10% H2O/He. (f) Electrochemical performance of La0.7Sr0.3Fe0.9Ni0.1O3-δ-GDC/LSGM/PrBa0.8Ca0.2Co2O5+δ-GDC cells for H2O-CO2 co-electrolysis. Inset: Long-term stability of co-electrolysis cells measured at a current density of 1 A·cm-2 with 20 vol% H2O-CO2 and 1073 K. (g) Relationships between surface oxophilicity and electrolysis performance. (h) Free energy diagrams for CO2 electrolysis on the monometallic Fe(110) clean surface, and surfaces pre-covered by O* with various coverages at 1073 K, standard pressure, and an applied potential of 1.3 V. (i) Plot comparing the energy barriers for CO2 dissociation and O diffusion as a function of oxygen surface coverage on Fe(110). Fig. (b) was reprinted with permission from Ref. [51]. Copyright 2009 Elsevier. Figs. (c,d,e) were reprinted with permission from Ref. [52]. Copyright 2019 Elsevier. Fig. (f) was reprinted with permission from Ref. [8]. Copyright 2021 Elsevier. Figs. (g,h,i) were reprinted with permission from Ref. [54]. Copyright 2020 American chemical society.
Fig. 5. (a) Schematic of utilization of CH4 as fuel in SOFCs. (b) I-V curves for CH4/CO2 co-electrolysis in different anodes. (c) Electrochemical oxidation of CH4 in conjunction with CO2 electrolysis, and the product analysis in the anode. 1: Sr2Fe1.5Mo0.5O6-δ (SFMO), 2: 0.025Fe-SFMO, 3: 0.050Fe-SFMO, 4: 0.075Fe-SFMO, 5: 0.100Fe-SFMO. (d) Long-term performance of the 0.075Fe-SFMO-SDC electrode for CH4 oxidation with CO2 electrolysis at 1123 K. (e) Development over time of reported stack test duration since 2009. (f) Degradation rates of reported SOEC stacks since 2009. (g) SOEC plant production capacities from 2015 to 2022. Fig. (b) was reprinted with permission from Ref. [59]. Copyright 2018 American Association for the Advancement of Science (AAAS). Figs. (c,d) were reprinted with permission from Ref. [60], according to Creative Commons Attribution 4.0 International License. Figs. (e,f,g) were reprinted with permission from Ref. [3]. Copyright 2020 AAAS.
|
[1] | 邹心仪, 顾均. 酸性条件下二氧化碳高效电还原策略[J]. 催化学报, 2023, 52(9): 14-31. |
[2] | 王潇涵, 田汉, 余旭, 陈立松, 崔香枝, 施剑林. 非晶相电催化剂在电解水领域的研究进展[J]. 催化学报, 2023, 51(8): 5-48. |
[3] | 尹春, 杨甫林, 王书莉, 冯立纲. 异质结构NiSe2/MoSe2用于高效尿素辅助电解水制氢[J]. 催化学报, 2023, 51(8): 225-236. |
[4] | 韩璟怡, 管景奇. 通过表面镧改性和体相锰掺杂协助钴尖晶石酸性下析氧[J]. 催化学报, 2023, 51(8): 1-4. |
[5] | 危长城, 张雯娜, 杨阔, 柏秀, 徐舒涛, 李金哲, 刘中民. CO2作为化学品原料的高效利用途径: 与烷烃耦合反应[J]. 催化学报, 2023, 47(4): 138-149. |
[6] | 王洪芳, 徐雷涛, 吴景程, 周鹏, 陶沙沙, 逯宇轩, 吴贤文, 王双印, 邹雨芹. 通过TEMPO增强脱氢和OH吸附促进中性电解质中5-羟甲基糠醛的电催化氧化[J]. 催化学报, 2023, 46(3): 148-156. |
[7] | 王珂然, 罗磊, 王超, 唐军旺. 双反应位点共修饰WO3光催化活化甲烷[J]. 催化学报, 2023, 46(3): 103-112. |
[8] | Diab khalafallah, 张运祥, 王昊, Jong-Min Lee, 张勤芳. 联产混合电解水策略实现节能电化学制氢的最新进展[J]. 催化学报, 2023, 55(12): 44-115. |
[9] | 杨竣皓, 安露露, 王双, 张辰浩, 罗官宇, 陈应泉, 杨会颖, 王得丽. 层状双氢氧化物基电解水催化剂的缺陷工程调控策略[J]. 催化学报, 2023, 55(12): 116-136. |
[10] | 林莉, 何潇洋, 谢顺吉, 王野. CO2电催化转化迈向大规模化的挑战与展望[J]. 催化学报, 2023, 53(10): 1-7. |
[11] | 陈杨屾, 阚淼, 燕帅, 张俊波, 刘坤豪, 严雅琴, 关安翔, 吕希蒙, 钱林平, 郑耿锋. 类空气浓度的二氧化碳的高效电还原[J]. 催化学报, 2022, 43(7): 1703-1709. |
[12] | 周莹杰, 刘天夫, 宋月锋, 吕厚甫, 刘清雪, 塔娜, 张小敏, 汪国雄. 镍高度分散在铁基钙钛矿用于高温固体氧化物电解池阴极的CO2电催化还原研究[J]. 催化学报, 2022, 43(7): 1710-1718. |
[13] | 成金玲, 王定胜. 二维水滑石复合材料用于电解水的研究进展[J]. 催化学报, 2022, 43(6): 1380-1398. |
[14] | 丁钰, 曹凯文, 贺嘉伟, 李富民, 黄昊, 陈沛, 陈煜. 氮掺杂石墨烯气凝胶负载的钌纳米晶用于宽pH范围析氢反应[J]. 催化学报, 2022, 43(6): 1535-1543. |
[15] | 张博禹, 石家福, 赵阳, 王涵, 储子仪, 陈裕, 吴振华, 姜忠义. 基于扩散强化的Pickering界面生物催化系统构建及CO2矿化过程研究[J]. 催化学报, 2022, 43(4): 1184-1191. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||