催化学报 ›› 2022, Vol. 43 ›› Issue (3): 679-707.DOI: 10.1016/S1872-2067(21)63863-9
李旭力a,b, 李宁a,b, 高旸钦a,b, 戈磊a,b,*()
收稿日期:
2021-04-20
修回日期:
2021-04-20
出版日期:
2022-03-18
发布日期:
2022-02-18
通讯作者:
戈磊
基金资助:
Xuli Lia,b, Ning Lia,b, Yangqin Gaoa,b, Lei Gea,b,*()
Received:
2021-04-20
Revised:
2021-04-20
Online:
2022-03-18
Published:
2022-02-18
Contact:
Lei Ge
Supported by:
摘要:
随着全球经济的快速发展, 能源短缺与环境污染成为当今世界共同关注的热点问题, 开发和利用洁净能源成为当务之急. 近年, 以半导体为基础的光催化技术引起了国内外的广泛关注, 其中包括光催化分解水制氢、光催化还原CO2、光催化固氮以及光催化降解污染物等. 尤其太阳能驱动的光催化分解水和光催化CO2还原均可将太阳能转化为可储存和运输的化学能源. 因此, 设计高效稳定的光催化材料具有重要意义. 中空结构材料由于具有比表面积大、光吸收效率高以及载流子传输路径缩短等优点, 在能量转换领域备受关注, 且中空材料的内外表面结构为其它组分的沉积提供了良好的平台. 近年来, 研究人员设计和合成了大量的多级纳米中空复合材料.
本文首先综述了中空材料的一般制备方法: 硬模板法、软模板法以及自模板法, 并从合成方法的基本概念、合成步骤以及优缺点进行了概述. 总结了近年用于光催化领域中典型单一中空结构材料的合成方法和机理, 包括中空结构的CdS, ZnxCd1‒xS, g-C3N4, TiO2, CeO2等体系. 但单一催化材料的光生电子-空穴对的复合效率较高, 导致其催化性能较低, 因此, 合理设计和构建多级结构对于提升光催化性能具有重要的意义. 其次, 对多级结构的中空材料进行了分类, 概述了构建策略、光催化制氢以及光催化还原二氧化碳的机制. 具有多级结构的中空光催化剂可分为两大类, 包括中空助催化剂为基体的材料和中空主光催化剂为基体的材料, 其它复杂中空光催体系也基于上述体系的延伸. 最后, 对中空结构的特征和影响规律的应用实例进行了介绍. 同时, 对文献报道的探索中空纳米材料光催化机理的有效方法, 如表面光电压测试、电子自旋顺磁共振技术、理论计算结合实验等技术手段进行了总结.
尽管中空材料在能量转换领域取得了一系列进展, 但该领域仍然存在诸多挑战, 与实际应用的要求仍然差距较大. 中空光催化材料的设计、制备和性能调控需要综合考虑经济、高性能、稳定性和环境友好等因素, 为大规模应用提供基础. 另一方面, 探索光催化机理非常重要, 深入进行机理研究不仅有利于设计高效光催化剂, 推动表征技术和微观结构分析的进步, 还有助于光催化领域的持续发展. 综上, 本文为新型中空材料的制备和光催化制氢和CO2还原机理的深入探索提供一定的参考和依据.
李旭力, 李宁, 高旸钦, 戈磊. 中空纳米材料的构建原理及其在光催化制氢和二氧化碳还原反应中的应用[J]. 催化学报, 2022, 43(3): 679-707.
Xuli Li, Ning Li, Yangqin Gao, Lei Ge. Design and applications of hollow-structured nanomaterials for photocatalytic H2 evolution and CO2 reduction[J]. Chinese Journal of Catalysis, 2022, 43(3): 679-707.
Fig. 2. (a) Illustration of procedures for preparing inorganic and hybrid hollow spheres. (b) The scheme shown for PS latex particles. Reprinted with permission from Ref. [98]. Copyright 1998, American Association for the Advancement of Science.
Fig. 3. SEM (a) and TEM (b) images of solid PB mesocrystals (average particle size: 110 nm) as the starting material. SEM (c) and TEM (d) images of the hollow PB mesocrystals (average particle size: 110 nm) synthesized by chemical etching. Inset images on the SEM and TEM images are (a,c) enlarged SEM images of one particle and (b,d) the corresponding selected-area electron diffraction (SAED) patterns of one particle. Reprinted with permission from Ref. [110]. Copyright 2012, Wiley-VCH GmbH.
Fig. 4. Schematic illustration of the formation process of NiCo2S4 ball-in-ball hollow spheres. Stage I, surface NiCo2S4 formed by anion exchange method. Stage II, further diffusion of S2- and formation of NiCo2S4 on the inner NiCo-glycerate core. Stage III, completion of the anion exchange reaction. M2+ refers to metal cations, including Ni2+ and Co2+ ions. Reprinted with permission from Ref. [113]. Copyright 2015, Springer Nature.
Fig. 5. TEM images of core-shell ZIF-8@ZIF-67 NPs annealed at 500 °C (a,e), 550 °C (b,f), 600 °C (c,g), and 800 °C (d,h). (i) Schematic of the formation process of NC@Co-NGC DSNCs. Reprinted with permission from Ref. [115]. Copyright 2017, Wiley-VCH GmbH.
Hollow photocatalyst | Morphology | Photocatalytic reaction | Performance (mmol h-1 g-1) | AQY | Year /Ref. | ||
---|---|---|---|---|---|---|---|
Hollow CdS | ![]() ![]() | H2 evolution | 3.14 | — | 2019 [ | ||
CdS frame- in-cage particles | ![]() | H2 evolution | 11.3 | 3.2% | 2020 [ | ||
Double- shelled CdS | ![]() ![]() | H2 evolution | 250.1 | — | 2020 [ | ||
Hollow CdS/Ni-Mo-S | ![]() ![]() | H2 evolution | 838.17 | — | 2019 [ | ||
Hollow CdS/Co9S8 | ![]() ![]() | H2 evolution | 1061.3 | — | 2017 [ | ||
Hollow photocatalyst | Morphology | Photocatalytic reaction | Performance (mmol h-1 g-1) | AQY | Year /Ref. | ||
Hollow CdS@g-C3N4 | ![]() ![]() | H2 evolution | 4.39 | 3.22% 420 nm | 2018 [ | ||
CdS@ZnIn2S4 hollow cubes | ![]() ![]() | H2 evolution | 540.3 | 1.53% 400 nm | 2021 [ | ||
Pd@CdS/PdS | ![]() ![]() | H2 evolution | 144.8 | — | 2018 [ | ||
MnOx@CdS/ CoP | ![]() ![]() | H2 evolution | 238.4 µmol h-1 (10 mg) | — | 2017 [ | ||
Au@HCS@ PdS | ![]() ![]() | H2 evolution | 16.35 | 41% 420 nm | 2020 [ | ||
Pt/TiO2/CdS/ Co3O4 | ![]() ![]() | H2 evolution | 2000 | — | 2017 [ | ||
NG/CdS | ![]() ![]() | CO2 reduction | CO (2.59) CH4 (0.33) | 0.9% 420 nm | 2019 [ |
Table 1 The applications of CdS-based hollow structures in photocatalytic reactions.
Hollow photocatalyst | Morphology | Photocatalytic reaction | Performance (mmol h-1 g-1) | AQY | Year /Ref. | ||
---|---|---|---|---|---|---|---|
Hollow CdS | ![]() ![]() | H2 evolution | 3.14 | — | 2019 [ | ||
CdS frame- in-cage particles | ![]() | H2 evolution | 11.3 | 3.2% | 2020 [ | ||
Double- shelled CdS | ![]() ![]() | H2 evolution | 250.1 | — | 2020 [ | ||
Hollow CdS/Ni-Mo-S | ![]() ![]() | H2 evolution | 838.17 | — | 2019 [ | ||
Hollow CdS/Co9S8 | ![]() ![]() | H2 evolution | 1061.3 | — | 2017 [ | ||
Hollow photocatalyst | Morphology | Photocatalytic reaction | Performance (mmol h-1 g-1) | AQY | Year /Ref. | ||
Hollow CdS@g-C3N4 | ![]() ![]() | H2 evolution | 4.39 | 3.22% 420 nm | 2018 [ | ||
CdS@ZnIn2S4 hollow cubes | ![]() ![]() | H2 evolution | 540.3 | 1.53% 400 nm | 2021 [ | ||
Pd@CdS/PdS | ![]() ![]() | H2 evolution | 144.8 | — | 2018 [ | ||
MnOx@CdS/ CoP | ![]() ![]() | H2 evolution | 238.4 µmol h-1 (10 mg) | — | 2017 [ | ||
Au@HCS@ PdS | ![]() ![]() | H2 evolution | 16.35 | 41% 420 nm | 2020 [ | ||
Pt/TiO2/CdS/ Co3O4 | ![]() ![]() | H2 evolution | 2000 | — | 2017 [ | ||
NG/CdS | ![]() ![]() | CO2 reduction | CO (2.59) CH4 (0.33) | 0.9% 420 nm | 2019 [ |
Fig. 7. TEM images of the obtained products after reactions for 0.5, 2, and 4 h, and the corresponding schematic illustration of the formation process of CdS-H. Reprinted with permission from Ref. [135]. Copyright 2019, Royal Society of Chemistry.
Fig. 8. (a) Schematic illustration of the two-step sulfidation approach for the fabrication of CdS frame-in-cage particles. (b) TEM images of Cd-PBA cubes. (c,d) Cd-PBA cube-in-CdS cage particles. (e) CdS frame-in-cage particles. Reprinted with permission from Ref. [136]. Copyright 2020, Wiley-VCH GmbH.
Fig. 9. TEM (a) and HAADF-STEM and EDX mapping images (b) of Zn0.6Cd0.4S NPs. (c) Schematic illustration of the synthesis process of hollow ZnCdS cages. Reprinted with permission from Ref. [137]. Copyright 2017, Royal Society of Chemistry.
Fig. 10. (a) TEM images of AA-[Zn(OH)4]2- composite nanospheres. (b) TEM images of ZnS composite nanospheres. (c) TEM images of DS-Zn0.46Cd0.54S hollow nanospheres. (d) Schematic illustration of the synthetic strategy of ZnxCd1-xS double-shell hollow nanospheres. Reprinted with permission from Ref. [148]. Copyright 2018, Elsevier B.V.
Hollow structure | Morphology | Photocatalytic reaction | Performance (mmol h-1 g-1) | AQY (%) | Year /Ref. |
---|---|---|---|---|---|
ZnxCd1-xS double-shell hollow nanospheres | ![]() ![]() | H2 evolution | 4110 | — | 2018 [ |
Hollow ZnCdS | ![]() ![]() | H2 evolution | 5.68 | — | 2017 [ |
Co9S8/ZCS | ![]() ![]() | H2 evolution | 10.9 | 8.96 420 nm | 2020 [ |
Co9S8/ZCS | ![]() ![]() | H2 evolution | 9.039 | 4.49 420 nm | 2020 [ |
Co9S8@ZnIn2S4 | ![]() ![]() | H2 evolution | 6.250 | — | 2018 [ |
Co/NGC@ ZnIn2S4 | ![]() ![]() | H2 evolution | 11.270 | 5.07 420 nm | 2019 [ |
MoSe2/CdSe | ![]() | H2 evolution O2 evolution | 7.120 0.348 | 27.2 670 nm | 2019 [ |
Table 2 The applications of ZnxCd1-xS or ZnIn2S4-based hollow structures in photocatalytic reactions.
Hollow structure | Morphology | Photocatalytic reaction | Performance (mmol h-1 g-1) | AQY (%) | Year /Ref. |
---|---|---|---|---|---|
ZnxCd1-xS double-shell hollow nanospheres | ![]() ![]() | H2 evolution | 4110 | — | 2018 [ |
Hollow ZnCdS | ![]() ![]() | H2 evolution | 5.68 | — | 2017 [ |
Co9S8/ZCS | ![]() ![]() | H2 evolution | 10.9 | 8.96 420 nm | 2020 [ |
Co9S8/ZCS | ![]() ![]() | H2 evolution | 9.039 | 4.49 420 nm | 2020 [ |
Co9S8@ZnIn2S4 | ![]() ![]() | H2 evolution | 6.250 | — | 2018 [ |
Co/NGC@ ZnIn2S4 | ![]() ![]() | H2 evolution | 11.270 | 5.07 420 nm | 2019 [ |
MoSe2/CdSe | ![]() | H2 evolution O2 evolution | 7.120 0.348 | 27.2 670 nm | 2019 [ |
Hollow structure | Morphology | Photocatalytic reaction | Performance | AQY (%) | Year /Ref. |
---|---|---|---|---|---|
Co3O4/ HCNS/Pt | | H2 evolution O2 evolution | 0.3 µmol h-1 0.1 µmol h-1 (20 mg) | — | 2016 [ |
PtNi/g-C3N4 | ![]() ![]() | H2 evolution | 98.6 µmol h-1 (50 mg) | 5.89 420 nm | 2018 [ |
CoSx/g-C3N4 | ![]() ![]() | H2 evolution | 629 µmol h-1 g-1 | — | 2018 [ |
CoNiSx-CN | ![]() ![]() | H2 evolution | 2366 μmol h-1 g-1 | 4.3 420 nm | 2019 [ |
g-C3N4@HG | ![]() | H2 evolution | 1.43 mmol h-1 g-1 | 3.56 420 nm | 2020 [ |
Table 3 The applications of g-C3N4-based hollow structures in photocatalytic reactions.
Hollow structure | Morphology | Photocatalytic reaction | Performance | AQY (%) | Year /Ref. |
---|---|---|---|---|---|
Co3O4/ HCNS/Pt | | H2 evolution O2 evolution | 0.3 µmol h-1 0.1 µmol h-1 (20 mg) | — | 2016 [ |
PtNi/g-C3N4 | ![]() ![]() | H2 evolution | 98.6 µmol h-1 (50 mg) | 5.89 420 nm | 2018 [ |
CoSx/g-C3N4 | ![]() ![]() | H2 evolution | 629 µmol h-1 g-1 | — | 2018 [ |
CoNiSx-CN | ![]() ![]() | H2 evolution | 2366 μmol h-1 g-1 | 4.3 420 nm | 2019 [ |
g-C3N4@HG | ![]() | H2 evolution | 1.43 mmol h-1 g-1 | 3.56 420 nm | 2020 [ |
Fig. 11. (a,b) SEM images of the tubular g-C3N4 at different magnifications. (c) TEM image of tubular g-C3N4. (d) TEM image of single tube of tubular g-C3N4 (the inset is SAED pattern of tubular g-C3N4). From Ref. [161]. (e) Schematic illustration of the formation of the carbon nitride nanotubes. Reprinted with permission from Ref. [160]. Copyright 2013 and 2012, Royal Society of Chemistry.
Hollow structure | Morphology | Photocatalytic reaction | Performance (mmol h-1 g-1) | AQY (%) | Year /Ref. |
---|---|---|---|---|---|
Co1.62Mo6S8/THS | ![]() ![]() | H2 evolution | 44.43 | 4.88 365 nm | 2020 [ |
TiO2/NiO | ![]() ![]() | H2 evolution dye degradation | 393 µmol h-1 g-1 88% within 100 min | — | 2015 [ |
NiO/TiO2/C | ![]() ![]() | H2 evolution dye degradation | 356 µmol h-1 g-1 RhB (94%) within 75 min MB (98%) within 100 min | — | 2016 [ |
RuO2@TiO2@Pt | ![]() ![]() | H2 production Pollutant degradation | 809 µmol h-1 g-1 RhB (98%); MO (80%) phenol (40%) | — | 2016 [ |
Ag-I-RuO2-O-THS | ![]() ![]() | H2 evolution | 300.2 µmol (5 h, 80 mg) | — | 2017 [ |
Pt@TiO2@ MnOx | ![]() ![]() | O2 evolution | 31.22 mmol (14 h, 30 mg) | 63.14 254 nm | 2016 [ |
Aux@THS@CoO | ![]() ![]() | CO2 reduction | CH4 (13.3) | — | 2019 [ |
Table 4 The applications of TiO2-based hollow structures in photocatalytic reactions.
Hollow structure | Morphology | Photocatalytic reaction | Performance (mmol h-1 g-1) | AQY (%) | Year /Ref. |
---|---|---|---|---|---|
Co1.62Mo6S8/THS | ![]() ![]() | H2 evolution | 44.43 | 4.88 365 nm | 2020 [ |
TiO2/NiO | ![]() ![]() | H2 evolution dye degradation | 393 µmol h-1 g-1 88% within 100 min | — | 2015 [ |
NiO/TiO2/C | ![]() ![]() | H2 evolution dye degradation | 356 µmol h-1 g-1 RhB (94%) within 75 min MB (98%) within 100 min | — | 2016 [ |
RuO2@TiO2@Pt | ![]() ![]() | H2 production Pollutant degradation | 809 µmol h-1 g-1 RhB (98%); MO (80%) phenol (40%) | — | 2016 [ |
Ag-I-RuO2-O-THS | ![]() ![]() | H2 evolution | 300.2 µmol (5 h, 80 mg) | — | 2017 [ |
Pt@TiO2@ MnOx | ![]() ![]() | O2 evolution | 31.22 mmol (14 h, 30 mg) | 63.14 254 nm | 2016 [ |
Aux@THS@CoO | ![]() ![]() | CO2 reduction | CH4 (13.3) | — | 2019 [ |
Fig. 12. Representative TEM images of particles obtained after processing times of 1 h (a), 2 h (b), 3 h (c), 4 h (d), 5 h (e), and 7 h (f). (g) Schematic of the particle formation and development of the hollow structure in the solvothermal process. The chemical conversion caused nonuniform development of tiny grains and empty spaces within the spheres, which enhanced the outward migration and relocation of the core grains toward the outer layer, resulting in the generation and development of a hollow structure. Reprinted with permission from Ref. [174]. Copyright 2016, Elsevier B.V.
Fig. 13. TEM images showing the morphological evolution of sSiO2@TiO2 samples after hydrothermal treatment at 140 °C for 0 h (a), 1 h (b), 2 h (c), 5 h (d), 10 h (e), and 24 h (f,g). (h) SEM image of DHS-Ti. (i) SEM image showing a broken double-shelled structure. (j) Schematic illustration of the formation process of double-shelled TiO2 hollow spheres. Reprinted with permission from Ref. [175]. Copyright 2017, Wiley-VCH GmbH.
Hollow structures | Morphology | Photocatalytic reaction | Performance (µmol h-1 g-1) | AQY (%) | Year /Ref. |
---|---|---|---|---|---|
CeO2/ZnIn2S4 | ![]() | Benzaldehyde evolution H2 evolution | 664.1 1496.6 | — | 2020 [ |
CeO2-xSx@CdS | ![]() ![]() | H2 evolution | 1147.2 | — | 2019 [ |
g-C3N4@CeO2 | ![]() ![]() | CO2 reduction | CH4 (3.5 µmol g-1, 4 h) CH3OH (5.2 µmol g-1, 4 h) CO (16.8 µmol g-1, 4 h) | 17.1 525 nm | 2019 [ |
ZnO1-x/C | ![]() ![]() | CO2 reduction | CO (µmol h-1 g-1, 4 h) | 0.13 | 2018 [ |
Table 5 The applications of CeO2-based or other hollow structures in photocatalytic reactions.
Hollow structures | Morphology | Photocatalytic reaction | Performance (µmol h-1 g-1) | AQY (%) | Year /Ref. |
---|---|---|---|---|---|
CeO2/ZnIn2S4 | ![]() | Benzaldehyde evolution H2 evolution | 664.1 1496.6 | — | 2020 [ |
CeO2-xSx@CdS | ![]() ![]() | H2 evolution | 1147.2 | — | 2019 [ |
g-C3N4@CeO2 | ![]() ![]() | CO2 reduction | CH4 (3.5 µmol g-1, 4 h) CH3OH (5.2 µmol g-1, 4 h) CO (16.8 µmol g-1, 4 h) | 17.1 525 nm | 2019 [ |
ZnO1-x/C | ![]() ![]() | CO2 reduction | CO (µmol h-1 g-1, 4 h) | 0.13 | 2018 [ |
Fig. 14. HRTEM and SAED images of CeO2 hollow structures: (a1,b1) polyhedron. (a2,b2) cube. (a3,b3) sphere. (c) Schematic illustration of the formation of CeO2 hollow structures by template-engaged coordinating etching of Cu2O nanocubes. Reprinted with permission from Ref. [183]. Copyright 2015, Elsevier B.V.
Fig. 15. (a) Schematic illustration of the synthetic process of hierarchical Co9S8@ZnIn2S4 heterostructured cage: (I) sulfidation reaction and thermal treatment in argon atmosphere and (II) growth of ZnIn2S4 nanosheets (NSs). (b) TEM images of Co9S8@ZnIn2S4 cages, (c) Photocatalytic H2 evolution performance of different samples. (d) EIS spectra of Co9S8@ZnIn2S4. Reprinted with permission from Ref. [200]. Copyright 2018, American Chemical Society.
Fig. 16. TEM images of CoSx (a), Co9S8 (b), and 10Co9S8/ZCS (c). (d) Photocatalytic H2 activity of different samples under visible-light irradiation. ESR spectra of h+ (e) and e- (f) signal of Zn0.5Cd0.5S and 10Co9S8/ZCS photocatalysts at different irradiation times at room temperature. (g) Work functions of Zn0.5Cd0.5S and Co9S8 samples. (h) Proposed mechanism of photocatalytic hydrogen process over Co9S8/ZCS composite. Reprinted with permission from Ref. [201]. Copyright 2020, Elsevier B.V.
Fig. 17. SEM (a) and TEM (b,c) images of the prepared 10%-Co9S8/ZnIn2S4 composite. (d) Schematic illustration of the fabrication process of hierarchical Co9S8/ZnIn2S4 tubular photocatalyst. (e) Amounts of H2 generated from the prepared samples in 5 h under visible-light irradiation. (f) Photocatalytic reduction of aqueous Cr(VI) by as-prepared samples under visible-light irradiation. (g) Schematic illustration of the transfer process of the photogenerated electrons and holes in the Co9S8/ZnIn2S4 heterostructure, and the photocatalytic mechanism for Cr(VI) reduction and H2 evolution under visible-light irradiation. Reprinted with permission from Ref. [202]. Copyright 2020,Wiley-VCH GmbH.
Fig. 18. (a) The schematic illustration for the fabrication of CoSx/g-C3N4 composites. TEM images of hollow CoSx polyhedrons (b) and 2%CoSx/g-C3N4 composite (c). (d) Photocatalytic H2 generation rate of g-C3N4 and CoSx/g-C3N4 composites with different CoSx contents (1% to 10%) under visible-light (λ ≥ 400 nm) irradiation. Electrostatic potentials of the monolayer g-C3N4 surface (e) and the CoS (001) surface (f). (g) The 3D charge density difference for CoS/g-C3N4 composite model. The isosurface value is 0.0004 e/Å3. The yellow and cyan regions represent charge accumulation and depletion, respectively. (h) The possible mechanism for the photocatalytic H2 evolution over the CoSx/g-C3N4 composite photocatalyst. (i) The schemes of light path and photothermal effect in the hollow CoSx polyhedron. Reprinted with permission from Ref. [203]. Copyright 2018, American Chemical Society.
Fig. 19. Electrostatic potentials for monolayer g-C3N4 (a) and CoNiSx (b). (c) Charge density difference of CoNiSx-CN model. The yellow regions represent charge accumulation, whereas the cyan regions represent charge depletion. (d) Calculated free-energy diagram of photocatalytic HER for the photocatalysts. Reprinted with permission from Ref. [204]. Copyright 2019, American Chemical Society.
Fig. 20. (a) SEM (A, B, D, E, G, H, J and K) and TEM (C, F, I and L) images of MoSe2 nanospheres with different reaction times (M1: 1 h; M2: 6 h; M3: 12 h; M4: 36 h) at 180 °C. (b-d) The photocatalytic mechanism of MoSe2/CdSe heterostructure with different light irradiation wavelengths. Reprinted with permission from Ref. [207]. Copyright 2019, Elsevier B.V.
Fig. 21. (a) TEM images of Co/NGC@ZIS cages. (b) Schematic illustration for the synthetic process of hierarchical Co/NGC@ZIS cages. I: growth of ZIF-67 on ZIF-8 particles. II: carbonization in N2 and acid etching. III: growth of ZnIn2S4 NSs. (c) Photocatalytic H2 evolution activities of Co/NGC, Co/NGC@ZIS, ZnIn2S4, and p-Co/NGC@ZIS. (d) H2 production rates of Co/NGC@ZIS with varied compositions, the solid counterparts of Co/NGC@ZIS-S and NGC@ZIS-S, and Co3O4/NGC@ZIS. (e) Illustration of the photocatalytic H2 evolution mechanism on Co/NGC@ZIS under visible-light irradiation. Reprinted with permission from Ref. [210]. Copyright 2019, Wiley-VCH GmbH.
Fig. 22. TEM (a), magnified TEM (b,c) and HRTEM (d) images of MHMs. (e) EDS mapping of multi-shelled hollow Cu-CeO2 microspheres. Reprinted with permission from Ref. [213]. Copyright 2019, Elsevier B.V. (f,g) TEM images of Pd@void@Pt@CeO2 core@shell nanospheres. (h,i) TEM images of (Pt-enriched cage)@CeO2 core@shell nanospheres. Reprinted with permission from Ref. [215]. Copyright 2017, Wiley-VCH GmbH.
Fig. 23. (a-c) TEM images of CeO2/ZnIn2S4. (d) Rates of photocatalytic dehydrogenation of PhCH2OH for H2 evolution and PhCHO production with different catalysts with a reaction time of 3 h. EPR spectra of DMPO-%O2- (e) and DMPO-%OH (f) over CeO2, ZnIn2S4, and CeO2/ZnIn2S4 under solar exposure. (g) Charge carrier flow mechanisms over Type II and direct Z-scheme heterojunctions for the CeO2/ZnIn2S4 composite. Reprinted with permission from Ref. [218]. Copyright 2020, Elsevier B.V.
Fig. 24. (a) Schematic illustration of the synthetic procedures for CdS@ZnIn2S4 hollow cubes (direct Z-scheme heterojunction). FESEM (b) and TEM (c) images. Reprinted with permission from Ref. [221]. Copyright 2021, Elsevier B.V.
Fig. 25. (a) TEM image of Pd@CdS/1%PdS. (b) An illustration of the preparation of Pd@CdS/PdS catalyst. (c) Time courses of H2 evolution over Pd@CdS/1%PdS. (d) Proposed charge transfer mechanism of the Pd@CdS/PdS catalyst. Reprinted with permission from Ref. [225]. Copyright 2018, Wiley-VCH GmbH.
Fig. 26. (a) TEM image of Au@HCS@PdS. (b) Schematic illustration for the formation of Au@HCS@PdS photocatalyst. (c) The comparison of enhancement of hydrogen production with the optimal amount of cocatalysts. (d,e) Arrhenius plots obtained by fitting the rates of photocatalytic hydrogen and temperature. The apparent activation energies were calculated with the Arrhenius equation. (f) Schematic diagram of photocatalytic H2 evolution mechanism on Au@HCS@PdS composite under visible-light irradiation. Reprinted with permission from Ref. [132]. Copyright 2020, Elsevier B.V.
Fig. 27. SEM (a) and TEM (b) images of HCNS/Pt samples. (c) TEM and HRTEM images of Co3O4/HCNS/Pt samples. (d) Time courses of photocatalytic evolution of H2 and O2 using Co3O4/HCNS/Pt (e) and (Co3O4+Pt)/HCNS (f) under UV irradiation (λ > 300 nm). Reprinted with permission from Ref. [155]. Copyright 2016, Wiley-VCH GmbH.
Fig. 28. (a) TEM image of Pt/TiO2/CdS/Co3O4 hollow spheres. (b) schematic of the synthesis process of Pt/TiO2/CdS/Co3O4 composite hollow spheres; Illustration of the (c) structure and (d) reaction procedure of double-shelled hollow sphere photocatalyst. Schematic of (e) band structures in TiO2/CdS double-shelled hollow spheres and (f) activity energy reduction on the surface of photocatalyst with Pt and Co3O4 Co-catalyst. Reprinted with permission from Ref. [228]. Copyright 2017, Elsevier B.V.
Fig. 29. (a,b) TEM images of CdG2. (c) Photocatalytic CO2 reduction performance of CdS, CdG1, CdG2, CdG3, and CdG5. (d) Schematic illustration of NG/CdS HS preparation process. Reprinted with permission from Ref. [232]. Copyright 2019, Wiley-VCH GmbH.
Fig. 30. (a,b) TEM image of Au2.0@THS@CoO. (c) Illustrations of formation process of Aux@THS@CoO. (d) Comparison of the average formation rates of CH4 for THS, THS@CoO, and Au2.0@THS@CoO samples. (e) EPR spectra of Au2.0@THS@CoO in the presence of CO2 and N2 before and after simulated solar light irradiation. (f) In situ FTIR spectra of CO2 and H2O interaction with Au2.0@THS@CoO and THS in the dark and subsequently irradiated for different times. (g) The possible mechanism for photoreduction CO2 over Aux@THS@CoO. Reprinted with permission from Ref. [233]. Copyright 2019, Elsevier B.V.
Fig. 31. (a) Schematic illustration of the formation process of NiCo2O4 hollow microspheres composed of nanosheets. TEM images of (b) NiCoG, (c) NiCo-OH and (d) NiCo2O4 hollow spheres. (e) EPR spectra of NiCo2O4 hollow spheres and NiCo2O4 nanoparticles. (f) CO2 adsorption isotherms of NiCo2O4 hollow spheres and NiCo2O4 nanoparticles at 273.15?K. (g) CO and H2 generation from the photocatalyst system under different reaction conditions and the percentages of the CO selectivity of different catalysts. (h) Time courses and stability tests of CO and H2 production over NiCo2O4 hollow spheres. Reprinted with permission from Ref. [235]. Copyright 2019, Elsevier B.V.
Fig. 32. (a) TEM image of 120BB. (b,c) In situ FTIR spectra of CO2 and H2O reaction on 120BB. (d) In situ ESR spectra of 120BB in different situations. (e,f) Electron densities of BiOBr and BiOBr (OVs) by DFT calculation. (g) Proposed mechanism of CO2 photoreduction for BiOBr microspheres. Reprinted with permission from Ref. [236]. Copyright 2021, Elsevier B.V.
Fig. 33. High‐resolution XPS spectra of N 1s (a) and Pt 4f (b). (c) CO2 TPD curves for the HHBs, N‐HHBs, and Pt/N‐HHBs. (d) Photocatalytic mechanism scheme of Pt1/N0.25‐HHBs under simulated sunlight irradiation. Reprinted with permission from Ref. [238]. Copyright 2020, Elsevier B.V.
|
[1] | 赵彬彬, 钟威, 陈峰, 王苹, 别传彪, 余火根. 高晶化g-C3N4光催化剂: 合成、结构调控和光催化产氢[J]. 催化学报, 2023, 52(9): 127-143. |
[2] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[3] | 蔡铭洁, 刘艳萍, 董珂欣, 陈晓波, 李世杰. 漂浮型Bi2WO6/C3N4/碳布S型异质结光催化材料用于高效净化水体环境[J]. 催化学报, 2023, 52(9): 239-251. |
[4] | 高晖, 张恭, 程东方, 王永涛, 赵静, 李晓芝, 杜晓伟, 赵志坚, 王拓, 张鹏, 巩金龙. 构建Cu台阶位促进电催化CO2还原制醇类化学品的研究[J]. 催化学报, 2023, 52(9): 187-195. |
[5] | 王思恺, 闵祥婷, 乔波涛, 颜宁, 张涛. 单原子催化: 追寻催化领域的“圣杯”[J]. 催化学报, 2023, 52(9): 1-13. |
[6] | 张雯, 宋彩彩, 王嘉蔚, 蔡舒婷, 高梦语, 冯有祥, 鲁统部. 双向主客体作用促进水溶液中选择性光催化CO2还原与醇氧化[J]. 催化学报, 2023, 52(9): 176-186. |
[7] | 江梓聪, 程蓓, 张留洋, 张振翼, 别传彪. 氧化锌基梯型异质结光催化剂[J]. 催化学报, 2023, 52(9): 32-49. |
[8] | 刘博文, 蔡家杰, 张建军, 谭海燕, 程蓓, 许景三. MOF/CdS梯型光催化剂同时进行苯甲醇氧化和析氢反应及其机理研究[J]. 催化学报, 2023, 51(8): 204-215. |
[9] | 乔蔚, 于立策, 常进法, 杨甫林, 冯立纲. MoSe2纳米片耦合Pt纳米颗粒用于高效双功能催化甲醇辅助水电解制氢[J]. 催化学报, 2023, 51(8): 113-123. |
[10] | 宋明明, 宋相海, 刘鑫, 周伟强, 霍鹏伟. ZnIn2S4/MOF-808微球结构S型异质结光催化剂的制备及其光还原CO2性能研究[J]. 催化学报, 2023, 51(8): 180-192. |
[11] | 邵秀丽, 李可, 李静萍, 程强, 王国宏, 王楷. 揭示NiS@Ta2O5纳米纤维中梯型电荷转移路径及光催化CO2转化性能[J]. 催化学报, 2023, 51(8): 193-203. |
[12] | 李嘉明, 李源, 王小田, 杨直雄, 张高科. TiO2上原子分散的Fe位点促进光催化CO2还原: 增强的催化活性、 DFT计算和机制洞察[J]. 催化学报, 2023, 51(8): 145-156. |
[13] | 阎菲, 张由子, 刘思碧, 邹睿卿, Jahan B Ghasemi, 李炫华. 供体-受体型卟啉基金属有机框架实现有效电荷分离高效光催化析氢[J]. 催化学报, 2023, 51(8): 124-134. |
[14] | 孙利娟, 王伟康, 路平, 刘芹芹, 王乐乐, 唐华. 纳米高熵合金实现光催化剂肖特基势垒的调控用于光催化制氢与苯甲醇氧化耦合反应[J]. 催化学报, 2023, 51(8): 90-100. |
[15] | 刘海峰, 黄祥, 陈加藏. 电子态调控促进氢气无损耗纯化中CO的光致富集和氧化[J]. 催化学报, 2023, 51(8): 49-54. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||