催化学报 ›› 2021, Vol. 42 ›› Issue (10): 1790-1797.DOI: 10.1016/S1872-2067(21)63820-2

• 论文 • 上一篇    下一篇

MOF负载[Ru(bpy)3]2+促进CO2还原反应中贵金属光敏剂的分离和循环利用

吴哲a,b, 郭颂b, 孔丽辉b, 耿爱芳a(), 王育杰b, 王平b, 姚爽a,b(), 陈凯凯b, 张志明b()   

  1. a长春理工大学化学与环境工程学院, 吉林长春130022
    b天津理工大学材料科学与工程学院, 化学与化工学院, 新能源与低碳技术研究院, 天津300384
  • 收稿日期:2021-03-18 接受日期:2021-04-01 出版日期:2021-10-18 发布日期:2021-06-20
  • 通讯作者: 耿爱芳,姚爽,张志明
  • 作者简介:$ 电子信箱:zmzhang@email.tjut.edu.cn
    #电子信箱:shuangyao@email.tjut.edu.cn;
    *电子信箱:gengaf0687@sina.com;
    第一联系人:

    共同第一作者.

  • 基金资助:
    国家自然科学基金(21971190);国家自然科学基金(22071180);天津市自然科学基金(18JCJQJC47700)

Doping [Ru(bpy)3]2+ into metal-organic framework to facilitate the separation and reuse of noble-metal photosensitizer during CO2 photoreduction

Zhe Wua,b, Song Guob, Li-Hui Kongb, Ai-Fang Genga(), Yu-Jie Wangb, Ping Wangb, Shuang Yaoa,b(), Kai-Kai Chenb, Zhi-Ming Zhangb()   

  1. aCollege of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin, China
    bInstitute for New Energy Materials and Low Carbon Technologies, School of Chemistry and Chemical Engineering, School of Material Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
  • Received:2021-03-18 Accepted:2021-04-01 Online:2021-10-18 Published:2021-06-20
  • Contact: Ai-Fang Geng,Shuang Yao,Zhi-Ming Zhang
  • About author:First author contact:

    These authours contributed equally to this work.

  • Supported by:
    National Natural Science Foundation of China(21971190);National Natural Science Foundation of China(22071180);Natural Science Foundation of Tianjin City of China(18JCJQJC47700)

摘要:

在太阳光驱动下, 将温室气体CO2还原为燃料分子有望解决人类社会面临的环境污染和能源危机问题. 此外, CO通常被用作C1源进行精细化学品制备. 因此, 开发高活性光催化体系将CO2高选择性还原到CO具有重要科学和实用意义. 光催化体系主要由光敏剂、催化剂和电子给体构成, 其中光敏剂作为光吸收中心和电子转移桥梁在光催化进程中扮演着极其重要的角色. 半个多世纪以来, 贵金属配合物光敏剂(如[Ru(bpy)3]2+)因其良好的可见光吸收能力和适中的氧化还原能力, 被广泛用于光催化CO2还原体系中. 然而, 贵金属配合物存在光化学稳定性较差、难以回收利用等问题, 严重限制了其广泛应用. 因此, 开发高效、稳定且易于循环利用的贵金属光敏剂用于CO2光还原具有重要意义.
本文采用溶剂热合成法, 成功将[Ru(bpy)3]2+限域到金属有机框架中, 通过调控钌配体的引入比例制得了一系列非均相钌基光敏剂(UiO-Ru-1, UiO-Ru-2和UiO-Ru-3). 通过X射线衍射、高分辨场发射扫描电镜和高分辨场发射透射电镜等技术证明了UiO-Ru的结构和形貌(正八面体). 将UiO-Ru用于光催化CO2还原, 以四联吡啶铁作为催化剂, UiO-Ru-2表现出极高的敏化能力, 在300 W氙灯下反应8 h, CO的产率可达171 mmol/g, 同时选择性达到100%, 是目前活性较高的光催化CO2还原体系之一. 该体系中, UiO-Ru-2循环利用三次, 其催化效率没有明显衰减, 表明其具有良好的光催化稳定性和可循环利用性. 值得注意的是, 钌含量增加(UiO-Ru-3)或者降低(UiO-Ru-1)催化活性均有所下降. 为解释这一现象, 本文利用稳态/瞬态光谱和电化学等技术手段对材料的光电化学性质进行了系统的研究. 稳态光谱测试结果表明, 随着Ru含量的增加, UiO-Ru的吸光和发光性能逐渐提升, 但激发态寿命却在逐渐降低. 此外, Ru含量增加会占据孔道, 减小金属有机框架的孔径, 阻碍底物和活性中心的接触. 因此, UiO-Ru-2中钌光敏中心含量适中, 较好地平衡了可见光吸收能力、激发态寿命和孔道大小之间的关系, 使得其催化活性显著优于其它光敏剂(UiO-Ru-1和UiO-Ru-3). 此外, 本文利用瞬态吸收光谱和电化学深入研究了光催化机制和电子转移路径, 将为高活性贵金属光敏剂异相化并用于构建高效、可持续的CO2还原体系提供重要借鉴.

关键词: 金属有机框架, 光敏剂, 二氧化碳还原, 非均相, Ru(II)配合物

Abstract:

It is desirable to develop highly efficient and sustainable catalytic systems for CO2 photoreduction using efficient heterogeneous photosensitizers (PSs); however, this remains a great challenge. In this study, we doped [Ru(bpy)3]2+ into UiO-metal-organic frameworks (MOFs) to facilitate the separation and reuse of noble metal PS. By simply adjusting the loading amount, a series of heterogeneous photoactive MOFs, namely, UiO-Ru-1, UiO-Ru-2, and UiO-Ru-3, were constructed to act as heterogeneous PSs to drive the efficient CO2 photoreduction under visible-light irradiation. Remarkably, UiO-Ru-2 exhibited the best photosensitizing ability among the prepared MOFs in sensitizing the iron quarterpyridine catalyst (C-1), and the CO yield reached as high as 171 mmol/g with ca. 100% selectivity, which is a record value among all the MOF-based photocatalysts. This photoactive MOF can be recycled and reused three times without any obvious activity loss, signifying its good photochemical stability. Experimental investigations confirmed that the strong visible absorption, long-lived excited state, appropriate redox potential, good photocatalytic stability, and excellent collaboration with C-1 were attributable to the superior catalytic activity. This work highlights an avenue for constructing heterogeneous PSs with excellent recyclability using MOF as the platform for efficient CO2 reduction.

Key words: Metal-organic framework, Photosensitizer, CO2 reduction, Heterogeneous, Ru(II) complex