催化学报 ›› 2022, Vol. 43 ›› Issue (1): 33-46.DOI: 10.1016/S1872-2067(21)63874-3
陈亨权, 邹列, 魏笛野, 郑灵灵*(), 吴元菲, 张华, 李剑锋#()
收稿日期:
2021-06-13
接受日期:
2021-06-21
出版日期:
2022-01-18
发布日期:
2021-07-02
通讯作者:
郑灵灵,李剑锋
基金资助:
Heng-Quan Chen, Lie Zou, Di-Ye Wei, Ling-Ling Zheng*(), Yuan-Fei Wu, Hua Zhang, Jian-Feng Li#()
Received:
2021-06-13
Accepted:
2021-06-21
Online:
2022-01-18
Published:
2021-07-02
Contact:
Ling-Ling Zheng,Jian-Feng Li
About author:
# E-mail: Li@xmu.edu.cnSupported by:
摘要:
近年来, 水分解、氧气/二氧化碳还原等电化学能源转换技术为解决全球能源短缺及环境问题提供了新的思路和方向. 然而, 对这些能源转换技术的反应机理及其催化剂的活性位点目前仍缺乏深刻的认识和理解, 这限制了高效、稳定催化剂的开发, 以致阻碍该类电化学技术的进一步发展. 原位光谱技术的快速发展为解决上述问题提供了坚实的基础, 其中拉曼光谱是检测含氧物种的有效技术, X射线吸收谱则是揭示催化剂配位环境和价态变化的有力工具.
鉴于此, 本文详细介绍了原位拉曼光谱和X射线吸收光谱在电化学领域的最新应用. 重点分析了一些代表性的例子, 主要包括: (1)揭示了不同Pt单晶以及Pt基催化剂表面的具体氧还原路径; (2)明确了过渡金属-氮-碳催化剂的真实氧还原位点; (3)解析了碱性条件下OH-离子对于氢氧化反应的作用; (4)揭示了氢析出反应中非Pt催化剂的活性位点; (5)检测到了氧析出和二氧化碳还原过程中催化剂的相变过程. 上述例子表明原位表征技术的确可以有效监测电化学催化过程, 捕捉中间产物, 揭示反应机理以及表征催化剂的相变过程, 可为合理的设计和制备高效催化剂提供可靠依据.
然而, 目前的原位表征技术还存在较多问题, 比如拉曼光谱往往需要借助增强基底来增强其信号, 从而限制其在表征实际催化剂中应用. 而基于同步辐射光源的X射线吸收光谱其能量较高, 可能会引发催化剂发生相变甚至损坏催化剂, 而且它是一种体相敏感的表征技术, 很难精确反映催化剂表面过程. 除了这些原位技术的本身局限性之外, 仍有许多问题阻碍对电催化过程的深入认识. 例如, 应将原位研究转化为工况研究, 尤其要考虑电解质的作用. 另外, 缺乏有效的时间分辨技术来揭示不同电位下活性物种的动态变化. 因此, 需要不断发展新技术以及新策略, 使得表征技术可以更精确真实地揭示电催化的原位过程, 更有效地指导催化剂的设计开发.
陈亨权, 邹列, 魏笛野, 郑灵灵, 吴元菲, 张华, 李剑锋. 原位拉曼光谱与X射线吸收光谱研究能源转换电催化反应[J]. 催化学报, 2022, 43(1): 33-46.
Heng-Quan Chen, Lie Zou, Di-Ye Wei, Ling-Ling Zheng, Yuan-Fei Wu, Hua Zhang, Jian-Feng Li. In situ studies of energy-related electrochemical reactions using Raman and X-ray absorption spectroscopy[J]. Chinese Journal of Catalysis, 2022, 43(1): 33-46.
Fig. 2. In situ EC-SHINERS spectra obtained during ORR of Pt (111) (a), Pt (100) (b), Pt (110) (c), Pt (311) (d), and Pt (211) (e) in 0.1 M O2-saturated HClO4 solution. Adapted with permission from Ref. [36,37]. Copyrights 2019 and 2020, Springer Nature and American Chemical Society. (f) SHINERS spectra of Pt (111), Pt (311), and P (211) in 0.1 M O2-saturated HClO4 solution at 0.8 V (vs. RHE). Adapted with permission from Ref. [37]. Copyright 2020, American Chemical Society.
Fig. 3. (a) Schematic diagram of in situ SERS employing the borrowing strategy; (b) In situ SERS spectra of Au@Pt and Au@PtNi in 0.1 M O2-saturated HClO4 solution; (c) Raman peak shift and half-wave potential vs. Ni content. Adapted with permission from Ref. [40]. Copyright 2020, American Chemical Society.
Fig. 4. (a) Schematic diagram of in situ SERS employing the SHINERS-satellite strategy; In situ SHINERS spectra of ORR on Pt3Co catalysts in 0.1 M HClO4 (b) and 0.1 M KOH (c). Adapted with permission from Ref. [41]. Copyright 2020, John Wiley and Sons.
Fig. 5. (a) In situ XANES of FePhenMOF-ArNH3; (b) In situ EXAFS of Fe PhenMOF-ArNH3; (c) Δμ-XANES of Fe-N-C obtained during ORR under potentials of 0.3 to 1.0 V; (d) Δμ-XANES derived from theoretical calculations and the Fe-N4-C8 model (inset). Adapted with permission from Ref. [45]. Copyright 2016, The Royal Society of Chemistry. (e) Three structural models of Fe-N4-Cx, labeled as D1, D2, and D3. Adapted with permission from Ref. [50]. Copyright 2015, American Chemical Society.
Fig. 6. In situ Raman spectra of Co (a), Au (b), ~0.4 ML Co oxides (c) on Au surfaces and ~87 ML Co oxides on Au surfaces (d) in 0.1 M KOH under various potentials. (a-d) Adapted with permission from Ref. [58]. Copyright 2011, American Chemical Society. (e) Chronopotentiometry measurements at 0.5 mA; (f) Raman spectra obtained in situ during the chronopotentiometry measurement. (e,f) Adapted with permission from Ref. [59]. Copyright 2019, John Wiley and Sons.
Fig. 7. (a) In situ Raman spectra of prepared NiSe2 in 1 M KOH. (a) Adapted with permission from Ref. [64]. Copyright 2020, John Wiley and Sons. In situ XANES (b) and Fourier-transformed EXAFS (c) of CoFeP during the OER in alkaline electrolyte. (b,c) Adapted with permission from Ref. [66]. Copyright 2019, American Chemical Society. (d) In situ Fourier-transformed EXAFS at Co k edge of Co-N-C. Adapted with permission from Ref. [69]. Copyright 2019, American Chemical Society.
Fig. 8. In situ SERS of Au@Pt (a) and Au @PtNi (b) in 0.1 M H2-saturated solution. (a,b) Adapted with permission from Ref. [75]. Copyright 2021, John Wiley and Sons. Ru K-edge in situ XANES of Ru/C (c) and PtRu/C (d) in H2-saturated solution under various potentials; In situ Δu-XANES of Ru/C (e) and PtRu/C (f) and their corresponding theoretical models (inset). (c-e) adapted with permission from Ref. [76]. Copyright 2017, John Wiley and Sons.
Fig. 9. In situ SERS of Ag@MoS2 in 0.1 M HClO4 electrolyte (a) and in 0.1 M DClO4 electrolyte (b). (a,b) adapted with permission from Ref. [81]. Copyright 2020, American Chemical Society. In situ Raman of SANi-I (c) and O-A-Ni-OH (d) under varying potentials. (c,d) adapted with permission from Ref. [83]. Copyright 2019, John Wiley and Sons.
Half electrochemical reaction | Standard potential/ V (vs. RHE) |
---|---|
CO2 + 2H+ + 2 e- → HCOOH | -0.258 |
CO2 + H2O (l) + 2e- → HCOO- + OH- | -1.078 |
CO2 + 2H+ + 2 e- → CO (g) + H2O (l) | -0.106 |
CO2 + 4H+ + 4 e- → CH2O (g) + H2O (l) | -0.700 |
CO2 + 3H2O (l) + 4e- → CH2O (g) + 4OH- | -0.898 |
CO2 + 6H+ +6e- → CH3OH (l) + H2O (l) | 0.016 |
CO2 +5H2O (l) + 6e- → CH3OH (l) + 6OH- | -0.812 |
CO2 + 8H+ + 8e- → CH4 (g) + 2H2O (l) | 0.169 |
CO2 + 6H2O (l) + 8e- → CH4 (g) + 8OH- | -0.659 |
2CO2 + 2H+ +2e- → H2C2O4 | -0.500 |
2CO2 + 12H+ + 12e- → CH2CH2 (g) + 4H2O (l) | 0.064 |
2CO2 + 8H2O (l) + 12e- → CH2CH2 (g) + 12OH- | -0.764 |
2CO2 + 9H2O (l) + 12e- → CH3CH2OH + 12OH- | -0.744 |
Table 1 Various pathways for the CO2RR.
Half electrochemical reaction | Standard potential/ V (vs. RHE) |
---|---|
CO2 + 2H+ + 2 e- → HCOOH | -0.258 |
CO2 + H2O (l) + 2e- → HCOO- + OH- | -1.078 |
CO2 + 2H+ + 2 e- → CO (g) + H2O (l) | -0.106 |
CO2 + 4H+ + 4 e- → CH2O (g) + H2O (l) | -0.700 |
CO2 + 3H2O (l) + 4e- → CH2O (g) + 4OH- | -0.898 |
CO2 + 6H+ +6e- → CH3OH (l) + H2O (l) | 0.016 |
CO2 +5H2O (l) + 6e- → CH3OH (l) + 6OH- | -0.812 |
CO2 + 8H+ + 8e- → CH4 (g) + 2H2O (l) | 0.169 |
CO2 + 6H2O (l) + 8e- → CH4 (g) + 8OH- | -0.659 |
2CO2 + 2H+ +2e- → H2C2O4 | -0.500 |
2CO2 + 12H+ + 12e- → CH2CH2 (g) + 4H2O (l) | 0.064 |
2CO2 + 8H2O (l) + 12e- → CH2CH2 (g) + 12OH- | -0.764 |
2CO2 + 9H2O (l) + 12e- → CH3CH2OH + 12OH- | -0.744 |
Fig. 10. (a) Ex situ Raman spectra of Cu, Zn, and CuxZn; In situ Raman spectra of Cu (b), Zn (c), and Cu4Zn (d). (a-d) Adapted with permission from Ref. [88]. Copyright 2016, American Chemical Society. Raman spectra focusing on the carboxyl/formate intermediate vibrational range for Cu, Cu12Sn, Cu5Sn6 at -0.4 V (vs. RHE) (e) and at -0.5 V (vs. RHE) (f). In situ Raman spectra of CO2RR on Cu5Sn6 (g) and Cu12Sn (h) in CO2-saturated 0.1 M KHCO3 electrolyte. (e-h) Adapted with permission from Ref. [89]. Copyright 2019, American Chemical Society. (i) In situ XANES of copper oxides and reference species. Adapted with permission from Ref. [90]. Copyright 2016, Springer Nature.
|
[1] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[2] | 张季, 俞爱民, 孙成华. 非金属掺杂石墨烯异核双原子催化剂氮还原特性研究[J]. 催化学报, 2023, 52(9): 263-270. |
[3] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
[4] | 洪岩, 王琦, 阚子旺, 张禹烁, 郭晶, 李思琦, 刘松, 李斌. 电化学氮还原氨反应催化剂的最新研究进展[J]. 催化学报, 2023, 52(9): 50-78. |
[5] | 刘勇, 赵晓丽, 隆昶, 王晓艳, 邓邦为, 李康璐, 孙艳娟, 董帆. 原位构筑动态Cu/Ce(OH)x界面用于高活性、高选择性和高稳定性硝酸盐还原合成氨[J]. 催化学报, 2023, 52(9): 196-206. |
[6] | 高晖, 张恭, 程东方, 王永涛, 赵静, 李晓芝, 杜晓伟, 赵志坚, 王拓, 张鹏, 巩金龙. 构建Cu台阶位促进电催化CO2还原制醇类化学品的研究[J]. 催化学报, 2023, 52(9): 187-195. |
[7] | 邹心仪, 顾均. 酸性条件下二氧化碳高效电还原策略[J]. 催化学报, 2023, 52(9): 14-31. |
[8] | 周波, 石建巧, 姜一民, 肖磊, 逯宇轩, 董帆, 陈晨, 王特华, 王双印, 邹雨芹. 强化脱氢动力学实现超低电池电压和大电流密度下抗坏血酸电氧化[J]. 催化学报, 2023, 50(7): 372-380. |
[9] | 王元男, 王立娜, 张可新, 徐靖尧, 武倩楠, 谢周兵, 安伟, 梁宵, 邹晓新. 钙钛矿氧化物在水裂解反应中的电催化研究[J]. 催化学报, 2023, 50(7): 109-125. |
[10] | 周纳, 王家志, 张宁, 王志, 王恒国, 黄岗, 鲍迪, 钟海霞, 张新波. 富含缺陷的Cu@CuTCNQ复合材料增强电催化硝酸盐还原成氨[J]. 催化学报, 2023, 50(7): 324-333. |
[11] | 李轩, 蒋兴星, 孔艳, 孙建桔, 胡琪, 柴晓燕, 杨恒攀, 何传新. GaN/In2O3的界面工程用于高效电催化CO2还原制备甲酸[J]. 催化学报, 2023, 50(7): 314-323. |
[12] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. 用于电化学能量转换反应的非贵金属单原子催化剂[J]. 催化学报, 2023, 50(7): 195-214. |
[13] | 牛青, 米林华, 陈玮, 李秋军, 钟升红, 于岩, 李留义. 基于共价有机框架的单位点光(电)催化材料的研究进展[J]. 催化学报, 2023, 50(7): 45-82. |
[14] | 欧阳玲, 梁杰, 罗永嵩, 郑冬冬, 孙圣钧, 刘倩, Mohamed S. Hamdy, 孙旭平, 应斌武. 电催化合成氨的研究进展[J]. 催化学报, 2023, 50(7): 6-44. |
[15] | 李静静, 张锋伟, 詹新雨, 郭河芳, 张涵, 昝文艳, 孙振宇, 张献明. 酞菁镍分子结构的精确设计: 优化电子和空间效应用于CO2电还原[J]. 催化学报, 2023, 48(5): 117-126. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||