催化学报 ›› 2022, Vol. 43 ›› Issue (1): 33-46.DOI: 10.1016/S1872-2067(21)63874-3

• 综述 • 上一篇    下一篇

原位拉曼光谱与X射线吸收光谱研究能源转换电催化反应

陈亨权, 邹列, 魏笛野, 郑灵灵*(), 吴元菲, 张华, 李剑锋#()   

  1. 厦门大学能源学院, 固体表面物理化学国家重点实验室, 能源材料化学协同创新中心, 化学化工学院, 材料学院, 厦门大学福建省先进材料重点实验室, 福建厦门361005
  • 收稿日期:2021-06-13 接受日期:2021-06-21 出版日期:2022-01-18 发布日期:2021-07-02
  • 通讯作者: 郑灵灵,李剑锋
  • 基金资助:
    国家自然科学基金(21925404);国家自然科学基金(21775127);国家自然科学基金(21991151);国家自然科学基金(22021001);国家重点研发项目(2020YFB1505800);国家重点研发项目(2019YFA0705400);111工程(B17027)

In situ studies of energy-related electrochemical reactions using Raman and X-ray absorption spectroscopy

Heng-Quan Chen, Lie Zou, Di-Ye Wei, Ling-Ling Zheng*(), Yuan-Fei Wu, Hua Zhang, Jian-Feng Li#()   

  1. College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, Fujian, China
  • Received:2021-06-13 Accepted:2021-06-21 Online:2022-01-18 Published:2021-07-02
  • Contact: Ling-Ling Zheng,Jian-Feng Li
  • About author:# E-mail: Li@xmu.edu.cn
    * E-mail: llzheng@xmu.edu.cn;
  • Supported by:
    National Natural Science Foundation of China(21925404);National Natural Science Foundation of China(21775127);National Natural Science Foundation of China(21991151);National Natural Science Foundation of China(22021001);National Key Research and Development Program of China(2020YFB1505800);National Key Research and Development Program of China(2019YFA0705400);"111" Project(B17027)

摘要:

近年来, 水分解、氧气/二氧化碳还原等电化学能源转换技术为解决全球能源短缺及环境问题提供了新的思路和方向. 然而, 对这些能源转换技术的反应机理及其催化剂的活性位点目前仍缺乏深刻的认识和理解, 这限制了高效、稳定催化剂的开发, 以致阻碍该类电化学技术的进一步发展. 原位光谱技术的快速发展为解决上述问题提供了坚实的基础, 其中拉曼光谱是检测含氧物种的有效技术, X射线吸收谱则是揭示催化剂配位环境和价态变化的有力工具.
鉴于此, 本文详细介绍了原位拉曼光谱和X射线吸收光谱在电化学领域的最新应用. 重点分析了一些代表性的例子, 主要包括: (1)揭示了不同Pt单晶以及Pt基催化剂表面的具体氧还原路径; (2)明确了过渡金属-氮-碳催化剂的真实氧还原位点; (3)解析了碱性条件下OH-离子对于氢氧化反应的作用; (4)揭示了氢析出反应中非Pt催化剂的活性位点; (5)检测到了氧析出和二氧化碳还原过程中催化剂的相变过程. 上述例子表明原位表征技术的确可以有效监测电化学催化过程, 捕捉中间产物, 揭示反应机理以及表征催化剂的相变过程, 可为合理的设计和制备高效催化剂提供可靠依据.
然而, 目前的原位表征技术还存在较多问题, 比如拉曼光谱往往需要借助增强基底来增强其信号, 从而限制其在表征实际催化剂中应用. 而基于同步辐射光源的X射线吸收光谱其能量较高, 可能会引发催化剂发生相变甚至损坏催化剂, 而且它是一种体相敏感的表征技术, 很难精确反映催化剂表面过程. 除了这些原位技术的本身局限性之外, 仍有许多问题阻碍对电催化过程的深入认识. 例如, 应将原位研究转化为工况研究, 尤其要考虑电解质的作用. 另外, 缺乏有效的时间分辨技术来揭示不同电位下活性物种的动态变化. 因此, 需要不断发展新技术以及新策略, 使得表征技术可以更精确真实地揭示电催化的原位过程, 更有效地指导催化剂的设计开发.

关键词: 拉曼光谱, X射线吸收光谱, 原位表征, 电催化, 能量存储与转化

Abstract:

Electrochemical energy conversion technologies involving processes such as water splitting and O2/CO2 reduction, provide promising solutions for addressing global energy scarcity and minimizing adverse environmental impact. However, due to a lack of an in-depth understanding of the reaction mechanisms and the nature of the active sites, further advancement of these techniques has been limited by the development of efficient and robust catalysts. Therefore, in situ characterization of these electrocatalytic processes under working conditions is essential. In this review, recent applications of in situ Raman spectroscopy and X-ray absorption spectroscopy for various nano- and single-atom catalysts in energy-related reactions are summarized. Notable cases are highlighted, including the capture of oxygen-containing intermediate species formed during the reduction of oxygen and oxidation of hydrogen, and the detection of catalyst structural transformations occurring with the change in potential during the evolution of oxygen and reduction of CO2. Finally, the challenges and outlook for advancing in situ spectroscopic technologies to gain a deeper fundamental understanding of these energy-related electrocatalytic processes are discussed.

Key words: Raman spectroscopy, X-ray absorption spectroscopy, In situ characterization, Electrocatalysis, Energy conversion and storage