催化学报 ›› 2022, Vol. 43 ›› Issue (1): 11-32.DOI: 10.1016/S1872-2067(21)63852-4
陈乐添a, 张旭a,b,#(), 陈安a, 姚赛a, 胡绪a, 周震a,b,*()
收稿日期:
2021-05-11
接受日期:
2021-05-28
出版日期:
2022-01-18
发布日期:
2021-07-07
通讯作者:
张旭,周震
基金资助:
Letian Chena, Xu Zhanga,b,#(), An Chena, Sai Yaoa, Xu Hua, Zhen Zhoua,b,*()
Received:
2021-05-11
Accepted:
2021-05-28
Online:
2022-01-18
Published:
2021-07-07
Contact:
Xu Zhang,Zhen Zhou
About author:
# E-mail: zhangxu@nankai.edu.cnSupported by:
摘要:
随着能源需求增长与化石燃料资源枯竭之间的矛盾日益突出, 以及石油、天然气等不可再生资源的燃烧带来的环境问题和全球变暖, 清洁可再生能源越来越受到人们的重视. 因此, 包括能源转换和可逆能源使用等的可持续发展技术受到广泛关注. 其中, 电催化被认为是清洁能源转化的重要方法. 目前, 电催化反应的催化剂仍以贵金属为主. 但贵金属昂贵的价格极大地限制了其使用, 因此, 开发廉价高效的电催化剂取代贵金属成为当务之急. 传统的“试错法”费时费力且成本较高. 近年来, 随着超级计算机和计算理论的快速发展, 密度泛函理论(DFT)和高通量计算可以指导材料的设计. 尽管如此, 要从巨大的化学空间中筛选出先进的电催化剂, 使清洁能源技术得以广泛普及, 仍是一个难题. 幸运的是, 跨学科融合及机器学习算法的发展为电催化剂的靶向设计注入新的动力. 机器学习已经能够以接近DFT的计算精度模拟电化学过程.
本文概述了机器学习方法在指导先进电催化剂的靶向设计中的应用, 包括结构、热力学和动力学性质的推测、简单真空环境下的近似能量预测和考虑显式溶剂分子的复杂带电界面的模拟. 除了基于机器学习的直接预测外, 还介绍了通过拟合势能面或构造力场的方法来模拟催化反应中的动力学过程. 在已有研究的基础上, 展望了机器学习在固液界面模拟中的应用前景. 本文提出的集成的机器学习模型有望有效地应用于恒电位下电催化界面的模拟, 同时, 用机器学习方法研究电化学过程将进一步推动高效电催化剂的靶向设计.
陈乐添, 张旭, 陈安, 姚赛, 胡绪, 周震. 利用机器学习靶向设计先进电催化剂[J]. 催化学报, 2022, 43(1): 11-32.
Letian Chen, Xu Zhang, An Chen, Sai Yao, Xu Hu, Zhen Zhou. Targeted design of advanced electrocatalysts by machine learning[J]. Chinese Journal of Catalysis, 2022, 43(1): 11-32.
Fig. 2. (a) Schematic illustration of the procedure for prediction of new compounds by using DMSP. Adapted with permission from Ref. [17]. Copyright 2011, American Chemical Society. (b) Discovery histogram for new ternary nitrides based on entries catalogued in ICSD. Adapted with permission from Ref. [51]. Copyright 2019, Nature.
Fig. 3. (a) Breeding processes in GAs for two example parents Ni6@Pt32 and Co6@Pt32. Adapted with permission from Ref. [19]. Copyright 2009, AIP publishers. (b) A schematic plot of generative machine learning model based on a generative adversarial network for inorganic materials. Adapted with permission from Ref. [22]. Copyright 2020, the Authors.
Fig. 4. (a) The confusion matrix with the F-Measure values of classification models. Adapted with permission from Ref. [49]. Copyright 2020, the Authors. (b) The convex hull located by ML-based GA. Adapted with permission from Ref. [23]. Copyright 2019, the Authors.
Fig. 5. (a) Relationship between the descriptor found by LASSO and overpotential of OER. Adapted with permission from Ref. [72]. Copyright 2020, American Chemical Society. (b) Relationship between the descriptor found by LASSO and Gibbs free energy of first hydrogenation for NRR. Inset: the optimized structures for N2 on 2D Ti@VB2. Adapted with permission from Ref. [73]. Copyright 2020, American Chemical Society. CO adsorption energies calculated by DFT vs. the one predicted by (c) the two-level interaction model or (d) ML model. Insets: sketches of (c) the two-level interaction model and (d) the artificial neural network models. (c,d) Adapted with permission from Ref. [74]. Copyright 2015, American Chemical Society. Comparison of the performance of ML for predicting adsorption energies trained with (e) the geometry based and (f) electronic structured based primary features. (e,f) Adapted with permission from Ref. [75]. Copyright 2017, Elsevier.
Fig. 6. (a) The limiting potential steps for MOR plotted with CO and OH adsorption free energies relative to Pt(111). Adapted with permission from Ref. [81]. Copyright 2017, Royal Society of Chemistry. (b) Performance of the GBR model for predicting adsorption energies of different adsorbates: CO (left), CHx (middle), and CO/CHO/COH (right). Insets: the feature importance scores of different descriptors (upper left corner) and the prediction error distribution (lower right corner). (c) Performance of the GBR model for predicting adsorption energies of adsorbates (11 species). Insets: the feature importance scores of different descriptors and the prediction error distribution. (b,c) Adapted with permission from Ref. [83]. Copyright 2017, Royal Society of Chemistry.
Fig. 7. (a) Heat map of the prediction values for CO adsorption energies. Adapted with permission from Ref. [85]. Copyright 2020, American Chemical Society. (b) t-SNE visualization of approximately 4000 adsorption sites simulated with DFT. (c) The sites for each cluster labelled in (b). (d) 2D selectivity volcano plot for CO2RR [91]. Copyright 2020, Nature. (e) The adsorption Gibbs free energies of N2 versus the adsorption Gibbs free energies of H for 23 transition metals. (b-e) Adapted with permission from Ref. [26]. Copyright 2020, American Chemical Society. (f) Visualization of catalytic sites on dealloyed gold surface. Adapted with permission from Ref. [92]. Copyright 2019, American Chemical Society.
Fig. 8. (a) Distribution of OH adsorption energies for 871 cells. Each individual on-top binding site is represented by a color. Adapted with permission from Ref. [25]. Copyright 2019, Elsevier. (b) iR-corrected LSV curve of Al0.5Mn2.5O4. Inset: the volcano plot where the location of Al0.5Mn2.5O4 is. The volcano plot represents the relationship between the experimentally observed reaction activity and the calculated Max(DT, DO), where DT is the distance between O p-band center and tetrahedral metal d-band center, and DO represents the distance from O p-band center to octahedral metal d-band center. Adapted with permission from Ref. [104]. Copyright 2019, Nature.
Fig. 9. Schematic diagram of (a) the FFNN for fitting PES and (b) the HDNN framework for a ternary system with A, B and C elements. (a,b) Adapted with permission from Ref. [38]. Copyright 2017, Wiley-VCH. (c) The process for the fitting of the PES by HDNN. Adapted with permission from Ref. [121]. Copyright 2015, American Chemical Society. (d) H-coupling reaction path of H2 production on amorphous surface of TiO2-0.69H. Adapted with permission from Ref. [39]. Copyright 2018, American Chemical Society. (e) Phase diagram of ternary Zn-Cr-O. Adapted with permission from Ref. [122]. Copyright 2019, Nature. (f) Reaction path of the acetylene hydrogenation on Pd(111) and Pd4H3(111). Adapted with permission from Ref. [123]. Copyright 2020, American Chemical Society.
Fig. 10. (a) Reaction network for the reaction of syngas to CO2, H2O, CH3OH, CH3CHO, CH4, CH3CH2OH and other intermediates. (b) The structure of Rh(111) and the reduced reaction network for syngas reaction on Rh(111) surface. The cyan, red, grey and white spheres represent Rh, O, C, and H atoms, respectively. Adapted with permission from Ref. [36]. Copyright 2017, the Authors.
Fig. 11. (a) Schematic of the BR used to predict energetics of reaction intermediates on nanoparticles. The training data of adsorbate binding energies on single-crystal surfaces and small clusters were calculated by DFT. Ek, Kkj, and wj represent the energy of kth reaction intermediate on nanoparticles, the SOAP kernel, and the regression coefficients, respectively [37]. Copyright 2017, American Chemical Society. (b) Predicted TOFs of each surface site at 500 K. Inset: a structure of the active site on Rh(1-x)Aux. Adapted with permission from Ref. [130]. Copyright 2017, American Chemical Society.
Fig. 12. (a) Schematic of ReQM. (b) Distribution of the formation energies for HOCO (left) and CO (right). Adapted with permission from Ref. [140]. Copyright 2021, Elsevier.
Fig. 13. (a) The electronic energy E and corresponding work function Φ as a function of reaction coordinates. (b) Reaction and activation energies calculated at different cell sizes ai vs. the change in potential and extrapolation of reaction and activation energies from unit cell size a0 to infinite cell size a∞. (c) Parity plot of reaction energies and barriers obtained by cell-extrapolation and the charge-extrapolation. Adapted with permission from Ref [158]. Copyright 2015, American Chemical Society.
Fig. 14. The prospect of machine learning in the explicit solvent model under constant potentials. The right part is the atomic structure of an electrocatalyst in an aqueous solution, including a porous carbon electrode, electrified interface and electrolyte solution. Adapted with permission from Ref [162]. Copyright 2021, Nature.
|
[1] | 周波, 石建巧, 姜一民, 肖磊, 逯宇轩, 董帆, 陈晨, 王特华, 王双印, 邹雨芹. 强化脱氢动力学实现超低电池电压和大电流密度下抗坏血酸电氧化[J]. 催化学报, 2023, 50(7): 372-380. |
[2] | 欧阳玲, 梁杰, 罗永嵩, 郑冬冬, 孙圣钧, 刘倩, Mohamed S. Hamdy, 孙旭平, 应斌武. 电催化合成氨的研究进展[J]. 催化学报, 2023, 50(7): 6-44. |
[3] | 陈宇卓, 王浩, 陆冰, 易倪, 曹亮, 王勇, 毛善俊. 用于高精度催化性能预测的精细结构敏感型深度学习框架[J]. 催化学报, 2023, 50(7): 284-296. |
[4] | 孟帅奇, 李忠玉, 张鹏, Francisca Contreras, 季宇, Ulrich Schwaneberg. 深度学习指导的热裂褐藻角质酶工程用于促进PET解聚[J]. 催化学报, 2023, 50(7): 229-238. |
[5] | 李静静, 张锋伟, 詹新雨, 郭河芳, 张涵, 昝文艳, 孙振宇, 张献明. 酞菁镍分子结构的精确设计: 优化电子和空间效应用于CO2电还原[J]. 催化学报, 2023, 48(5): 117-126. |
[6] | 张文静, 李静, 魏子栋. 碳基氧还原电催化剂: 机理研究和多孔结构[J]. 催化学报, 2023, 48(5): 15-31. |
[7] | 吴则星, 高玉肖, 王子璇, 肖卫平, 王新萍, 李彬, 李镇江, 刘晓斌, 马天翼, 王磊. 表面富集的超小铂纳米颗粒耦合缺陷磷化钴用于高效的电催化水分解和柔性锌空气电池[J]. 催化学报, 2023, 46(3): 36-47. |
[8] | 刘小妮, 刘晓斌, 李彩霞, 杨波, 王磊. 缺陷工程在金属基电池中的研究进展[J]. 催化学报, 2023, 45(2): 27-87. |
[9] | 王立晶, 杨天一, 冯博, 许祥雨, 申玉莹, 李孜涵, Arramel, 江吉周. 基于机器学习和第一性原理计算构建双电子转移通道加速CO2光还原[J]. 催化学报, 2023, 54(11): 265-277. |
[10] | 逯宇轩, 杨柳, 姜一民, 原甑然, 王双印, 邹雨芹. 局域静电环境工程用于增强电催化生物质转化过程中羟基活性[J]. 催化学报, 2023, 53(10): 153-160. |
[11] | 乔玉彦, 潘艳秋, 张江威, 王彬, 武婷婷, 范文俊, 曹雨程, Rashid Mehmood, 张飞, 章福祥. 多碳界面工程用于促进NiFe纳米复合电催化剂的产氧反应[J]. 催化学报, 2022, 43(9): 2354-2362. |
[12] | 李晓天, 陈林, 商城, 刘智攀. 调控炔烃半氢化反应的催化选择性: 实验和理论的最新进展[J]. 催化学报, 2022, 43(8): 1991-2000. |
[13] | 崔彤, 翟雪君, 郭莉莉, 迟京起, 张昱, 朱家伟, 孙雪梅, 王磊. 自组装百合花状超低Ru, Ni掺杂的Fe2O3用于大电流碱性海水电解双功能电催化[J]. 催化学报, 2022, 43(8): 2202-2211. |
[14] | 钱秀, 魏艳娇, 孙梦洁, 韩野, 张晓俐, 田健, 邵敏华. 在Ti3C2Tx MXene上原位生长2D TiO2纳米片的异质结构用于改善电催化氮气还原[J]. 催化学报, 2022, 43(7): 1937-1944. |
[15] | 王慧宁, 关安翔, 张俊波, 米玉莹, 李思, 袁涛涛, 静超, 张丽娟, 张林娟, 郑耿锋. 铜掺杂的羟基氧化镍用于高效电催化乙醇氧化[J]. 催化学报, 2022, 43(6): 1478-1484. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||