催化学报 ›› 2022, Vol. 43 ›› Issue (4): 928-955.DOI: 10.1016/S1872-2067(21)63924-4

• 综述 • 上一篇    下一篇

多相催化剂活性位点的配位环境及其对催化性能的影响

王春鹏a,, 王哲b,c,, 毛善俊a,c, 陈志荣b,c, 王勇a,c,*()   

  1. a浙江大学化学系催化研究所, 先进材料与催化组, 浙江杭州310028
    b浙江大学化学工程与生物工程学院, 浙江杭州310028
    c浙江大学化学前瞻技术研究中心, 浙江杭州310028
  • 收稿日期:2021-07-18 接受日期:2021-07-18 出版日期:2022-03-05 发布日期:2022-03-01
  • 通讯作者: 王勇
  • 作者简介:第一联系人:

    共同第一作者

  • 基金资助:
    国家自然科学基金(21872121);国家自然科学基金(21908189);浙江省重点研发计划项目(2020C01133)

Coordination environment of active sites and their effect on catalytic performance of heterogeneous catalysts

Chunpeng Wanga,, Zhe Wangb,c,, Shanjun Maoa,c, Zhirong Chenb,c, Yong Wanga,c,*()   

  1. aAdvanced Materials and Catalysis Group, Institute of Catalysis, Zhejiang University, Hangzhou 310028, Zhejiang, China
    bCollege of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310028, Zhejiang, China
    cCenter of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310028, Zhejiang, China
  • Received:2021-07-18 Accepted:2021-07-18 Online:2022-03-05 Published:2022-03-01
  • Contact: Yong Wang
  • About author:Yong Wang received his BS degree from Xiangtan University and his PhD degree from Zhejiang University. After a postdoctoral stay at the Department of Chemistry, Zhejiang University, he joined the Max Planck Institute for Colloids and Interfaces in Potsdam/Germany in 2009. He rejoined Zhejiang University and became a professor for Chemistry in 2011. Now he is Ph.D. supervisor, director of the Institute of Catalysis at the Department of Chemistry in Zhejiang University. He was included in the Highly Cited Researcher list by Clarivate Analytics 2020 and 2021 (Web of Science™, Thomson Reuters) in the field of Cross-Field and Chemistry, respectively. His research group has been focusing on the basic science and applied research for the design and development of novel materials for heterogeneous catalysis and energy conversion. The group strives to pursue green energy technologies and the fundamental science that make these technologies a reality. He joined the Editorial Board of Chin. J. Catal. in 2020.
    First author contact:

    Contributed to this work equally.

  • Supported by:
    National Natural Science Foundation of China(21872121);National Natural Science Foundation of China(21908189);Key R&D Project of Zhejiang Province(2020C01133)

摘要:

多相催化技术在化工产业中一直发挥着重要作用, 近年来也被广泛应用于燃料电池、绿色化学、纳米技术、生物技术等新兴领域. 其中, 金属催化剂在加氢、氧化、氢甲酰化、偶联等多种反应中表现出较高的催化效率. 然而社会发展对金属催化剂的效率提出了更高的要求, 针对特定反应, 开发兼具高活性、高选择性和优良稳定性的理想催化剂一直是学术界和工业界的研究热点. 而全面理解金属催化剂活性中心的配位结构与催化性能之间的构-效关系, 将为开发先进催化剂提供更充分的理论指导. 在金属催化剂中, 担任活性中心的金属位点在邻近位置上通常存在一些与之直接键合的配位原子/离子, 同时次邻近或更远位置的原子/离子也会以电荷传递、晶格张力等方式影响着金属中心的结构, 此外周围原子呈现出的空间分布也会营造出特定的立体环境, 影响着底物、中间体等与金属中心的作用, 以上诸类因素都称为金属中心的配位环境. 这些因素的变化会显著影响金属中心与反应物、中间体以及产物之间的相互作用, 进而改变反应机理以及催化剂的性能. 深入解析影响金属中心配位环境的主要因素以及金属催化剂在反应过程中的构-效关系, 并在原子水平上精准调控其微纳结构, 既可以深化对多相催化反应原理的理解, 也可以为合理设计出新一代高活性、高选择性、高稳定性的工业催化剂提供帮助. 但在很多情况下, 金属催化剂活性中心结构的复杂性阻碍了人们从原子水平深入理解催化反应机制, 从而使得合理设计高性能金属催化剂变得更加困难. 近年来先进的表征技术大量涌现, 为准确分析金属中心微纳结构和反应机理提供了诸多便利.
本综述首先系统总结了金属颗粒的尺寸和形貌、载体的种类和性质、多组分合金的结构、有机配体的修饰等因素对金属中心配位环境及催化性能的影响规律; 然后, 详细分析了X射线光电子能谱、X射线吸收精细结构谱、扫描透射电子显微镜等表征手段在确立金属中心配位环境方面的作用, 尤其是反应工况下金属微纳结构动态变化的原位表征技术显著提升了现代催化科学在反应机理方面的认识. 上述对于催化中心精细结构以及微观反应机制的认识和总结可为构建性能优异、应用广泛的新一代金属催化剂提供理论指导和借鉴.

关键词: 多相催化, 负载型催化剂, 配位环境, 金属催化剂, 原位表征

Abstract:

The structural complexity of supported metal catalysts, playing significant role in a wide range of chemical technologies, have prevented us from deeply understanding their catalytic mechanisms at atomic level. A fundamental understanding of the nature of active sites and structure-performance relationship of supported metal catalysts from a comprehensive view will open up numerous new opportunities for the development of advanced catalysts to address the global challenges in energy conversion and environmental protection. This review surveys the effects of multiple factors, including the metal size, shape, support, alloy and ligand modifier, on the coordinated environment of active center and further their influence on the catalytic reactions, aiming to provide guidance for the design of industrialized heterogeneous catalysts with extraordinary performance. Subsequently, the key structure characterization techniques in determining the coordination structure of active metal sites, especially the dynamic coordination structure change under the reaction condition, are well summarized. A brief summary is finally provided together with personal perspectives on the further development in the field of heterogeneous metal catalysts.

Key words: Heterogeneous catalysis, Supported catalyst, Coordination environment, Metal catalyst, In-situ characterization