催化学报 ›› 2022, Vol. 43 ›› Issue (4): 898-912.DOI: 10.1016/S1872-2067(21)63933-5
收稿日期:
2021-07-29
接受日期:
2021-07-29
出版日期:
2022-03-05
发布日期:
2021-09-06
通讯作者:
陈晨
基金资助:
Qinggang Liu, Junguo Ma, Chen Chen*()
Received:
2021-07-29
Accepted:
2021-07-29
Online:
2022-03-05
Published:
2021-09-06
Contact:
Chen Chen
About author:
Chen Chen received his BS degree from the Department of Chemistry, Beijing Institute of Technology in 2006, and his PhD degree from the Department of Chemistry, Tsinghua University in 2011. After the postdoctoral work at Lawrence Berkeley National Laboratory, he joined the Department of Chemistry at Tsinghua University as an Associate Professor in 2015, and was promoted to Professor with tenure in 2021. His research interests are focused on nanomaterials for catalysis and sustainable energy. His name is in the lists of Highly Cited Researchers 2021 from Clarivate. He joined the Editorial Board of Chinese Journal of Catalysis in 2020.
Supported by:
摘要:
纳米催化在现代化学工业中起着至关重要的作用. 当前社会的高速发展, 促使人们在不同领域探索新型纳米催化剂引导技术革命以解决日益严峻的能源及环境危机. 要实现在原子水平上精确调控并对催化剂结构进行设计以开发高效的纳米催化剂, 必须深入了解其中的基本物理化学理论, 如活性中心的配位结构以及催化剂与吸附质之间的作用规律等. 然而, 受当前表征技术和理论化学及合成方法学的限制, 从复杂的纳米催化体系中剥离出真正的活性位并对其进行精确定向合成还面临极大的挑战. 本文总结了影响纳米催化的因素, 并重点阐述了开发电催化和光催化及热催化纳米催化剂中涉及的合成策略.
在电催化反应体系中, 围绕电解水和氢燃料电池以及CO2电还原催化剂的开发策略进行了阐述. 为缓解当前商用析氢和析氧催化剂对贵金属的依赖, 本课题组基于具有核壳结构的金属-有机聚合物前体开发了一种热解策略, 分别制备了多孔氮掺杂碳材料包覆的CoP/NCNHP和MoP@NCHSs电解水催化剂. 得益于多孔碳材料暴露的高活性位数量及氮物种与活性金属之间的强协同作用, 该类催化剂在催化酸性析氢反应(HER)和碱性HER以及析氧反应(OER)中表现出高效的活性和稳定性. 此外, 本文介绍了一种可以极大提高金属利用效率的Pt3Ni纳米框架催化剂. 该框架结构呈现独特的Pt表面富集特征, 不仅最大限度地暴露了高活性的棱/角位点, 还有利于分子在框架内部的扩散传质, 这种独特的结构使其在氧还原反应(ORR)中表现出较好的催化活性. 针对电催化CO2还原, 本文重点阐述了氮配位策略在单原子催化中的应用, 并针对单原子在催化多分子转化时面临的挑战, 发展了一种“原子对”催化剂.
在光催化反应体系中, 为促进光生电子-空穴对的分离并抑制其复合, 本课题组报道了一种具备快速可逆光致变色能力的Bi2WO6‒x纳米片. 与传统光致变色材料不同, Bi2WO6‒x纳米片在光照及O2的作用下可以实现光生电子的快速利用及空穴的消耗, 使光生载流子分离得到显著而持续的增强; 此外, 通过比较载流子在不同晶面的动力学差异, 本课题组还揭示了少数载流子动力学对光催化反应活性的影响规律, 实现了温和条件下光催化高效碳氢键活化.
在多相催化反应体系中, 总结了一系列控制金属原子聚集状态的制备策略. 针对工业上重要的硅烷氧化和苯氧化以及N-甲酰化反应, 重点阐述了氮配位及MXene缺陷稳定策略在制备单原子Au1/mpg-C3N4、Fe-N4以及Pt1/Ti3‒xC2Ty催化剂中的应用及反应活性位点的调控研究.
刘清港, 马俊国, 陈晨. 纳米催化剂的理性设计与精准调控[J]. 催化学报, 2022, 43(4): 898-912.
Qinggang Liu, Junguo Ma, Chen Chen. Rational design and precise manipulation of nano-catalysts[J]. Chinese Journal of Catalysis, 2022, 43(4): 898-912.
Fig. 2. (a) Schematic illustration of the preparation for the CoP/NCNHP; (b) The linear sweep voltammetry (LSV) curve of the CoP/NCNHP// CoP/NCNHP electrode in 1 mol/L KOH with iR compensation in a two-electrode system; (c) Chronopotentiometric curve of water electrolysis at different current densities in 1 mol/L KOH; (d) Calculated density of states (DOS) for CoP/NCNHP and pure CoP; (e) Charge density distribution maps of the CoP/NCNHP catalyst; (f) Calculated free energy diagram of the HER on CoP, surface-oxidized 50% CoP, and surface-oxidized 100% CoP, respectively. Reprinted with permission from Ref. [73]. Copyright 2018, American Chemical Society.
Fig. 3. (a) LSV curves of MoP@NCHSs-T, bulk MoP, and commercial 20% Pt/C in 1.0 mol/L KOH; (b) Stability of the MoP@NCHSs-900 catalyst in 1.0 mol/L KOH; (c) Average Bader charge of N-doping carbon; (d) Free energy diagram of the water dissociation step. Reprinted with permission from Ref. [74]. Copyright 2019, John Wiley and Sons.
Fig. 4. (a) Schematic illustrations and corresponding TEM images of the samples during the evolution process from polyhedral to nanoframes; (b) HAADF-STEM image and corresponding EDX data (mapping and line-scan) of annealed hollow Pt3Ni nanoframe; (c) Specific activities measured at 0.95 V, and improvement factors versus Pt/C catalysts; (d) ORR polarization curves and corresponding Tafel plots (inset) of Pt3Ni frames before and after 10000 potential cycles. Reprinted with permission from Ref. [80]. Copyright 2014, American Association for the Advancement of Science.
Fig. 5. (a) Schematic illustration of the preparation for the Co-N5/HNPCSs catalyst; (b) HAADF-STEM and EDS images of the Co-N5/HNPCSs catalyst; LSV curves (c) and FECO and FEH2 (d) of the Co-N5/HNPCSs and CoPc catalysts; (e) Calculated free energy of CO2RR. Reprinted with permission from Ref. [82]. Copyright 2018, American Chemical Society.
Fig. 6. (a) Current-voltage curves for different samples from LSV scans; (b) FECO and FEH2 of different Cu-loaded samples at -0.78 V (vs. RHE); (c) Free energy profiles for CO2 activation on Cu, Cu@Cu2O and Cu-APC. (d) Configurations of physisorbed CO2 and chemisorbed CO2 on Cu-APC. Reprinted with permission from Ref. [83]. Copyright 2019, Springer Nature.
Fig. 7. (a) Schematic illustration of photoinduced hole on {110} and {001} of WO3 during BA oxidation. (b) Morphology model and HRTEM graph of WO3 nanowire and nanosheet. Dynamics of carriers on two crystal facets: hole mobility (c); electron mobility (d); hole diffusion length (e); reaction rates of benzyl alcohol oxidation (f); steady state fluorescence (g); and hole lifetime (h). Reprinted with permission from Ref. [90]. Copyright 2018, American Chemical Society.
Fig. 8. (a) Schematic illustration of the structure and catalytic mechanism of p-BWO; (b) TEM image of the p-BWO nanosheets; (c) Digital photographs of p-BWO in the initial versus coloured state; (d) Photoluminescence emission spectra (excitation at 340 nm) of the p-BWO and pristine Bi2WO6; (e) Conversion rate of toluene oxidation for Bi2WO6 and p-BWO with different substrate loadings; (f) Schematic of the separation of photoinduced carriers of p-BWO, and the mechanism of photocatalytic reaction and photochromism. Reprinted with permission from Ref. [93]. Copyright 2019, Springer Nature.
Fig. 9. (a) The aberration-corrected HAADF-STEM images of Au1/mpg-C3N4; (b) Fourier transform magnitudes of the EXAFS spectra for Au1/mpg-C3N4, Au NPs/mpg-C3N4 and Au foil; (c) Conversion rate of the diphenylmethylsilane in water with different Au catalysts; (d) The mechanism of silane oxidation over single-site Au catalyst. Reprinted with permission from Ref. [99]. Copyright 2018, John Wiley and Sons.
Fig. 10. The aberration-corrected HAADF-STEM images of the Fe-N4 SAs/N-C (a), Fe-N3C1 SAs/N-C (b), FeN2C2 SAs/N-C (c) catalysts. The insets are the corresponding structure model. (d) HAADF-STEM-EDS mapping of the Fe-N4 SAs/N-C catalyst; XANES spectra at the C K-edge (e), N K-edge (f), and Fe L-edge (g). Reprinted with permission from Ref. [103]. Copyright 2019, Springer Nature.
Fig. 11. (a) Illustration of the self-reduction method for the preparation of Pt1/Ti3-xC2Ty; (b) HAADF-STEM image of Pt1/Ti3-xC2Ty and corresponding intensity maps obtained in line 1 in (b); (c) Catalytic performance of the N-formylation of aniline using different catalysts and the recycling test of Pt1/Ti3-xC2Ty; (d) EXAFS spectra of Pt1/Ti3-xC2Ty; (e) Charge density difference of Pt1/Ti3-xC2Ty with a plain view. Reprinted with permission from Ref. [107]. Copyright 2019, American Chemical Society.
|
[1] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[2] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
[3] | 王思恺, 闵祥婷, 乔波涛, 颜宁, 张涛. 单原子催化: 追寻催化领域的“圣杯”[J]. 催化学报, 2023, 52(9): 1-13. |
[4] | 赵磊, 张震, 朱昭昭, 李平波, 蒋金霞, 杨婷婷, 熊佩, 安旭光, 牛晓滨, 齐学强, 陈俊松, 吴睿. 缺陷氮掺杂碳耦合Co-N5单原子位点用于高效锌-空气电池[J]. 催化学报, 2023, 51(8): 216-224. |
[5] | 乔蔚, 于立策, 常进法, 杨甫林, 冯立纲. MoSe2纳米片耦合Pt纳米颗粒用于高效双功能催化甲醇辅助水电解制氢[J]. 催化学报, 2023, 51(8): 113-123. |
[6] | 李嘉明, 李源, 王小田, 杨直雄, 张高科. TiO2上原子分散的Fe位点促进光催化CO2还原: 增强的催化活性、 DFT计算和机制洞察[J]. 催化学报, 2023, 51(8): 145-156. |
[7] | 贡立圆, 王颖, 刘杰, 王显, 李阳, 侯帅, 武志坚, 金钊, 刘长鹏, 邢巍, 葛君杰. 重塑位于火山曲线右支的弱吸附金属单原子位点的配位环境及电子结构[J]. 催化学报, 2023, 50(7): 352-360. |
[8] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. 用于电化学能量转换反应的非贵金属单原子催化剂[J]. 催化学报, 2023, 50(7): 195-214. |
[9] | 张光颖, 刘旭, 张欣欣, 梁志坚, 邢耕宇, 蔡斌, 沈迪, 王蕾, 付宏刚. P修饰提高Fe-N-C的氧反应活性用于高稳定的锌-空气电池[J]. 催化学报, 2023, 49(6): 141-151. |
[10] | 黄正清, 贺姝玥, 班涛, 高新, 许云华, 常春然. Pt-Cu合金催化剂上甲烷无氧偶联的机理与微观动力学研究: 从单原子位点到单团簇位点[J]. 催化学报, 2023, 48(5): 90-100. |
[11] | 韦之栋, 严嘉玮, 郭伟琦, 上官文峰. 多面体SrTiO3原位生长N缺陷PCN中的纳米叠层效应助力光催化完全分解水: 内建电场调控的协同机制[J]. 催化学报, 2023, 48(5): 279-289. |
[12] | 姜润, 乔泽龙, 许昊翔, 曹达鹏. 用于氧还原反应的Fe-N-C单原子催化剂的缺陷工程[J]. 催化学报, 2023, 48(5): 224-234. |
[13] | 张文静, 李静, 魏子栋. 碳基氧还原电催化剂: 机理研究和多孔结构[J]. 催化学报, 2023, 48(5): 15-31. |
[14] | 张锋伟, 郭河芳, 刘萌萌, 赵阳, 洪峰, 李静静, 董正平, 乔波涛. 表面应力介导的碳基Pt纳米催化剂用于硝基芳烃的高选择性加氢[J]. 催化学报, 2023, 48(5): 195-204. |
[15] | Eun Hyup Kim, Min Hee Lee, Jeehye Kim, Eun Cheol Ra, Ju Hyeong Lee, Jae Sung Lee. 无碱CO2加氢高效制甲酸Pd/g-C3N4催化剂的单原子和纳米簇的协同作用[J]. 催化学报, 2023, 47(4): 214-221. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||