催化学报 ›› 2022, Vol. 43 ›› Issue (4): 1017-1041.DOI: 10.1016/S1872-2067(21)63942-6
王梦茹a,†, 王奕a,†, 牟效玲a,*(), 林荣和a,#(
), 丁云杰a,b,c,$(
)
收稿日期:
2021-07-29
接受日期:
2021-07-29
出版日期:
2022-03-05
发布日期:
2022-03-01
通讯作者:
牟效玲,林荣和,丁云杰
作者简介:
第一联系人:†共同第一作者.
Mengru Wanga,†, Yi Wanga,†, Xiaoling Moua,*(), Ronghe Lina,#(
), Yunjie Dinga,b,c,$(
)
Received:
2021-07-29
Accepted:
2021-07-29
Online:
2022-03-05
Published:
2022-03-01
Contact:
Xiaoling Mou, Ronghe Lin, Yunjie Ding
About author:
First author contact:†Contributed equally to this work.
Supported by:
摘要:
催化裂化是石油化工的核心单元之一. 从催化裂化尾气中分离出来的碳四馏分富含许多的不饱和烯烃, 如1-丁烯、顺、反式-2-丁烯以及少量的1,3-丁二烯, 这些不饱和烯烃可以通过后续聚合反应, 生成合成橡胶和工程塑料的重要原料, 具有重要的应用价值. 上述工艺过程对原料中1,3-丁二烯的含量(<100~200 ppm)有严苛的要求. 采用选择性加氢技术对碳四馏分中的1,3-丁二烯进行选择性加氢, 将其转化为更高附加值的单烯烃是一个理想的解决方案. 然而, 1,3-丁二烯加氢反应得到的单烯烃可能发生深度加氢得到副产物丁烷. 因此, 开发高效选择性加氢催化剂对碳四资源的利用具有重要的现实意义. 另一方面, 1,3-丁二烯加氢反应可以作为模型反应, 用来考察选择性加氢催化剂的性能. 基于此, 该反应无论在工业界还是学术界均受到广泛关注. 尽管如此, 有关1,3-丁二烯加氢催化剂研究进展方面的综述极少. 仅有关于1,3-丁二烯加氢作为模型反应的综述报道.
本文对过去半个世纪以来1,3-丁二烯加氢反应中不同催化剂的发展历程进行系统综述, 特别是包括Pd, Pt和Au等的单一贵金属催化剂. 重点介绍以下内容: (1)固体催化剂构效关系, 包括活性金属尺寸效应、晶面和形貌效应以及载体效应(晶相、孔道和酸碱性); (2)高性能催化剂的设计新策略, 如单原子催化剂、核壳结构催化剂、金属-离子液复合催化体系以及载体的形貌调控; (3)催化剂的反应机理和失活机理. 提出了1,3-丁二烯选择性加氢高性能催化剂开发面临的挑战, 并对潜在的发展方向进行了展望. 本文认为随着纳米技术和金属纳米材料合成方法的快速发展, 对贵金属活性组分进行原子层面上的调控(包括形貌、尺寸以及单原子配位环境等)已成为可能. 这将有助于研制出一类新型高性能选择性加氢催化材料, 从而实现高转化率条件下高附加值单烯烃的定向转化. 此外, 载体的酸碱性和孔道结构的调控有助于进一步调节催化剂的抗积炭性能, 也是未来发展的一个重要方向.
王梦茹, 王奕, 牟效玲, 林荣和, 丁云杰. 1,3-丁二烯选择性加氢催化剂的设计策略以及构效关系[J]. 催化学报, 2022, 43(4): 1017-1041.
Mengru Wang, Yi Wang, Xiaoling Mou, Ronghe Lin, Yunjie Ding. Design strategies and structure-performance relationships of heterogeneous catalysts for selective hydrogenation of 1,3-butadiene[J]. Chinese Journal of Catalysis, 2022, 43(4): 1017-1041.
Fig. 4. Correlation of 1-butene yield with Pauling electronegativity for the elements of the first (black symbols), the second (blue symbols) and the third transition series (red symbols). Adapted with permission from Ref. [47]. Copyright 2002, Elsevier.
Catalyst | Synthesis method | Conditions | Performance | Ref. | ||||
---|---|---|---|---|---|---|---|---|
T /K | H2:BD /(mol:mol‒1) | GHSV /(cm3g‒1h‒1) | X /% | Sbutenes /% | Stability (h) | |||
Pd/Al2O3 | Impregnation, 0.54 wt% Pd | 293 | 6.6 | 2000000 | 20 | ~77 | 18 | [ |
Pd/Al2O3 | Reverse micelle method, 1 wt% Pd | 298 | 5 | 22500 | 98 | 10 | 5 | [ |
Pd/θ-/α-Al2O3 | Impregnation, 0.5 wt% Pd | 343 | 1 | 120000 | ~74 | ~96 | — | [ |
Pd/SiO2 | Ion exchange | 323 | 2 | 375000 | 91 | 92 | — | [ |
Pd1/graphene | ALD method, 0.25 wt% Pd | 323 | 2.5 | 33333 | 95 | 100 | 50 | [ |
CNT-Pd CLW a | Colloid grafting, 0.51 wt% Pd | 300 | 49 | 2506 | 94 | 98 | 6 | [ |
Pd/ZnO-b | Incipient wetness impregnation | 313 | 5 | — | 96 | 90 | — | [ |
Pd/ZnO-n | Incipient wetness impregnation | 313 | 5 | — | 97 | 80 | — | [ |
Pd/ZnO-t | Incipient wetness impregnation | 313 | 5 | — | 100 | 48 | — | [ |
Pd/pollen-TiO2 | Rape pollen-templated synthesis, 0.3 wt% Pd | 323 | 2 | 36000 | 95 | 99 | — | [ |
Pd-BMI·BF4 b | Reduction of Pd2+in ionic liquids | 313 | — | — | 99 | 97 | — | [ |
Pt/m-Al2O3 | Surfactant-assisted impregnation, 0.2 wt% Pt | 473 | 8 | 5000 | 48 | 100 | 25 | [ |
Pt@ZSBA c | Mercaptosilane-assisted method, 0.16 wt% Pt | 298 | 78 | 490800 | 30 | ~80 | 6 | [ |
Pt/SiO2 | Impregnation, 1 wt% Pt | 440 | 15 | — | 100 | ~80 | — | [ |
Au/Al2O3 | Deposition-precipitation, 1 wt% Au | 458 | 49 | 8000 | 100 | 100 | — | [ |
Au/TiO2 | Gas-phase grafting, 1 wt% Au | 458 | 49 | 8000 | 100 | 99.7 | — | [ |
Au/Al2O3 | Deposition-precipitation, 0.9 wt% Au | 443 | 67 | 30000 | 100 | 100 | — | [ |
Au/ZrO2 | Deposition-precipitation, 0.08 wt% Au, KCN leached | 393 | 46 | 8100 | 90 | 100 | 6 | [ |
Au/SiO2 | Deposition-precipitation, 3.7 wt% Au | 393 | 49 | 6000 | ~85 | 100 | 9 | [ |
Au/γ-Al2O3 | Deposition-precipitation | 473 | 49 | 23832 | 85 | 100 | — | [ |
Au/ZnO | Deposition-precipitation, 1 wt% Au | 453 | 67 | 30000 | 100 | 100 | — | [ |
Au/TiO2 | Deposition-precipitation, 1 wt% Au | 498 | 67 | 30000 | 100 | 100 | — | [ |
Au/SBA-15 | Deposition, 1 wt% Au | 473 | 67 | 17550 | 98 | 100 | 21 | [ |
Au/CeO2-CN | Deposition precipitation, 0.08 wt% Au, NaCN leached | 393 | 39 | 24000 | 45 | 100 | 12 | [ |
Au/CNTs-i d | Deposition precipitation, 1.62 wt% Au | 423 | 71.6 | 81000 | 56 | 100 | 6 | [ |
Dimeric Rh/MgO | Grafting impregnation, 0.4 wt% Rh | 313 | 49 | 9000 | 99 | 97 | 5 | [ |
Ni65-BMI·BF4 | Physical mixing and calcination, 7 wt% Ni | 313 | 2 | — | 99 | >95 | — | [ |
Ni65-[P4441][MeSO4] e | Physical mixing and calcination, 6.2 wt% Ni | 418 | 2 | — | 99 | >99 | 50 | [ |
Co-BTC-500 f | Carbonization og MOF precursor | 348 | 60 | 178800 | 92 | ~80 | 6 | [ |
Cu/SiO2 | Impregnation, 5.7 wt% Cu | 413 | 66 | 35000 | 100 | 100 | 60 | [ |
Au@Pd@SiO2 | Colloid synthesis, Au:Pd = 2.13, 0.2 wt% Au + Pd | 318 | 67 | 150000 | 98 | 80 | — | [ |
Pd-Au/ZnO-t | Wet impregnation, Au:Pd = 0.53, 1 wt% Au | 313 | 5 | — | 99 | 100 | — | [ |
Pd-Au/Al2O3 | Deposition precipitation, Au:Pd = 20, 0.87 wt% Au | 393 | 67 | 30000 | 100 | 100 | — | [ |
Pd-Au/Al2O3 | Colloid deposition, Au:Pd = 20, 0.9 wt% Au | 333 | 67 | 30000 | 100 | 99.2 | — | [ |
Pd-Ti/SiO2 | Ion exchange and impregnation, Ti:Pd = 1 | 323 | 2 | 375000 | 89 | >95 | — | [ |
Pd-Sn/θ-/α-Al2O3 | Impregnation, 0.5 wt% Pd, 0.2 wt% Sn | 343 | 1 | 120000 | ~80 | 99 | — | [ |
KBr-Pd/γ-Al2O3 | Microwave-assisted synthesis, 0.4 wt% Pd | 308 | 2 | 36000 | 100 | 80 | 24 | [ |
Fe-Pd/-Al2O3 | ALD coating, 30 cycles | 310 | 2.5 | 3000 | 99 | 95 | — | [ |
Al-Pd/Al2O3 | ALD coating, 0.25 wt% Pd | 373 | 2.5 | 3000 | 99 | 99 | 62 | [ |
Ag-Pd/γ-Al2O3 | Sol immobilization, 0.5 wt% metal, Ag:Pd = 3 | 308 | 2 | 16200 | >90 | ~90 | 50 | [ |
Cu-Pd/Mn2O3 | Sol immobilization, 1 wt% Pd, 0.9 wt% Cu | 300 | 2 | 36000 | 99 | 92 | 10 | [ |
Au-Pt/UiO-67 | Impregnation-reduction, 1.89 wt% Pt, Au:Pt = 1:1.7 | 373 | 50 | 111000 | 40 | 80 | 6 | [ |
Pt-Cu/Al2O3 | Galvanic replacement method, 0.11 wt% Pt, 13.7 wt% Cu | 418-433 | 8 | 1200 g | 100 | >95 | 25 | [ |
Au-Ni/TiO2 | Co-deposition precipitation, Au:Ni = 1:0.08, 1 wt% Au | 393 | 67 | 30000 | 100 | 100 | — | [ |
Au-Ag/SBA-15 | Deposition, 1 wt% Au, Au:Ag = 3 | 473 | 67 | 17550 | 79 | 100 | 21 | [ |
Table 1 A summary of catalytic performance of representative catalysts in 1,3-butadiene hydrogenation.
Catalyst | Synthesis method | Conditions | Performance | Ref. | ||||
---|---|---|---|---|---|---|---|---|
T /K | H2:BD /(mol:mol‒1) | GHSV /(cm3g‒1h‒1) | X /% | Sbutenes /% | Stability (h) | |||
Pd/Al2O3 | Impregnation, 0.54 wt% Pd | 293 | 6.6 | 2000000 | 20 | ~77 | 18 | [ |
Pd/Al2O3 | Reverse micelle method, 1 wt% Pd | 298 | 5 | 22500 | 98 | 10 | 5 | [ |
Pd/θ-/α-Al2O3 | Impregnation, 0.5 wt% Pd | 343 | 1 | 120000 | ~74 | ~96 | — | [ |
Pd/SiO2 | Ion exchange | 323 | 2 | 375000 | 91 | 92 | — | [ |
Pd1/graphene | ALD method, 0.25 wt% Pd | 323 | 2.5 | 33333 | 95 | 100 | 50 | [ |
CNT-Pd CLW a | Colloid grafting, 0.51 wt% Pd | 300 | 49 | 2506 | 94 | 98 | 6 | [ |
Pd/ZnO-b | Incipient wetness impregnation | 313 | 5 | — | 96 | 90 | — | [ |
Pd/ZnO-n | Incipient wetness impregnation | 313 | 5 | — | 97 | 80 | — | [ |
Pd/ZnO-t | Incipient wetness impregnation | 313 | 5 | — | 100 | 48 | — | [ |
Pd/pollen-TiO2 | Rape pollen-templated synthesis, 0.3 wt% Pd | 323 | 2 | 36000 | 95 | 99 | — | [ |
Pd-BMI·BF4 b | Reduction of Pd2+in ionic liquids | 313 | — | — | 99 | 97 | — | [ |
Pt/m-Al2O3 | Surfactant-assisted impregnation, 0.2 wt% Pt | 473 | 8 | 5000 | 48 | 100 | 25 | [ |
Pt@ZSBA c | Mercaptosilane-assisted method, 0.16 wt% Pt | 298 | 78 | 490800 | 30 | ~80 | 6 | [ |
Pt/SiO2 | Impregnation, 1 wt% Pt | 440 | 15 | — | 100 | ~80 | — | [ |
Au/Al2O3 | Deposition-precipitation, 1 wt% Au | 458 | 49 | 8000 | 100 | 100 | — | [ |
Au/TiO2 | Gas-phase grafting, 1 wt% Au | 458 | 49 | 8000 | 100 | 99.7 | — | [ |
Au/Al2O3 | Deposition-precipitation, 0.9 wt% Au | 443 | 67 | 30000 | 100 | 100 | — | [ |
Au/ZrO2 | Deposition-precipitation, 0.08 wt% Au, KCN leached | 393 | 46 | 8100 | 90 | 100 | 6 | [ |
Au/SiO2 | Deposition-precipitation, 3.7 wt% Au | 393 | 49 | 6000 | ~85 | 100 | 9 | [ |
Au/γ-Al2O3 | Deposition-precipitation | 473 | 49 | 23832 | 85 | 100 | — | [ |
Au/ZnO | Deposition-precipitation, 1 wt% Au | 453 | 67 | 30000 | 100 | 100 | — | [ |
Au/TiO2 | Deposition-precipitation, 1 wt% Au | 498 | 67 | 30000 | 100 | 100 | — | [ |
Au/SBA-15 | Deposition, 1 wt% Au | 473 | 67 | 17550 | 98 | 100 | 21 | [ |
Au/CeO2-CN | Deposition precipitation, 0.08 wt% Au, NaCN leached | 393 | 39 | 24000 | 45 | 100 | 12 | [ |
Au/CNTs-i d | Deposition precipitation, 1.62 wt% Au | 423 | 71.6 | 81000 | 56 | 100 | 6 | [ |
Dimeric Rh/MgO | Grafting impregnation, 0.4 wt% Rh | 313 | 49 | 9000 | 99 | 97 | 5 | [ |
Ni65-BMI·BF4 | Physical mixing and calcination, 7 wt% Ni | 313 | 2 | — | 99 | >95 | — | [ |
Ni65-[P4441][MeSO4] e | Physical mixing and calcination, 6.2 wt% Ni | 418 | 2 | — | 99 | >99 | 50 | [ |
Co-BTC-500 f | Carbonization og MOF precursor | 348 | 60 | 178800 | 92 | ~80 | 6 | [ |
Cu/SiO2 | Impregnation, 5.7 wt% Cu | 413 | 66 | 35000 | 100 | 100 | 60 | [ |
Au@Pd@SiO2 | Colloid synthesis, Au:Pd = 2.13, 0.2 wt% Au + Pd | 318 | 67 | 150000 | 98 | 80 | — | [ |
Pd-Au/ZnO-t | Wet impregnation, Au:Pd = 0.53, 1 wt% Au | 313 | 5 | — | 99 | 100 | — | [ |
Pd-Au/Al2O3 | Deposition precipitation, Au:Pd = 20, 0.87 wt% Au | 393 | 67 | 30000 | 100 | 100 | — | [ |
Pd-Au/Al2O3 | Colloid deposition, Au:Pd = 20, 0.9 wt% Au | 333 | 67 | 30000 | 100 | 99.2 | — | [ |
Pd-Ti/SiO2 | Ion exchange and impregnation, Ti:Pd = 1 | 323 | 2 | 375000 | 89 | >95 | — | [ |
Pd-Sn/θ-/α-Al2O3 | Impregnation, 0.5 wt% Pd, 0.2 wt% Sn | 343 | 1 | 120000 | ~80 | 99 | — | [ |
KBr-Pd/γ-Al2O3 | Microwave-assisted synthesis, 0.4 wt% Pd | 308 | 2 | 36000 | 100 | 80 | 24 | [ |
Fe-Pd/-Al2O3 | ALD coating, 30 cycles | 310 | 2.5 | 3000 | 99 | 95 | — | [ |
Al-Pd/Al2O3 | ALD coating, 0.25 wt% Pd | 373 | 2.5 | 3000 | 99 | 99 | 62 | [ |
Ag-Pd/γ-Al2O3 | Sol immobilization, 0.5 wt% metal, Ag:Pd = 3 | 308 | 2 | 16200 | >90 | ~90 | 50 | [ |
Cu-Pd/Mn2O3 | Sol immobilization, 1 wt% Pd, 0.9 wt% Cu | 300 | 2 | 36000 | 99 | 92 | 10 | [ |
Au-Pt/UiO-67 | Impregnation-reduction, 1.89 wt% Pt, Au:Pt = 1:1.7 | 373 | 50 | 111000 | 40 | 80 | 6 | [ |
Pt-Cu/Al2O3 | Galvanic replacement method, 0.11 wt% Pt, 13.7 wt% Cu | 418-433 | 8 | 1200 g | 100 | >95 | 25 | [ |
Au-Ni/TiO2 | Co-deposition precipitation, Au:Ni = 1:0.08, 1 wt% Au | 393 | 67 | 30000 | 100 | 100 | — | [ |
Au-Ag/SBA-15 | Deposition, 1 wt% Au, Au:Ag = 3 | 473 | 67 | 17550 | 79 | 100 | 21 | [ |
Fig. 5. Structure sensitivity of Pd catalysts in the hydrogenation of 1,3-butadiene. (a) Relative variation of turnover number with respect to Pd dispersion for the hydrogenation of 1,3-butadiene. Adapted with permission from Ref. [76]. Copyright 1983, Elsevier. (b) Turnover frequency as a function of mean particle size over supported Pd catalysts at 293 K. Adapted with permission from Ref. [21]. Copyright 1991, Elsevier. (c) Turnover frequency as a function of particle size over Pd/Al2O3, normalized by the total number of Pd surface atoms (left), and Pd surface atoms within incomplete (111) facets (right). Adapted with permission from Ref. [77]. Copyright 2006, Elsevier. TOFs of Pd single crystals in (b) and (c) were indicated by the arrows.
Fig. 6. Shape effect of Pd catalysts in the hydrogenation of 1,3-butadiene. (a,c) TEM images of Pd catalysts with different shapes: I, prism; II and V, icosahedra; III and VI, cubes, IV, nanowires; (b) the TOFs as a function of Pd(111) concentration; (d) comparison of TOFs of shape-controlled Pd nanostructures on different supports. (a,b) Adapted with permission from Ref. [80]. Copyright 2008 Royal Society of Chemistry. (c,d) Adapted with permission from Ref. [51]. Copyright 2012, Wiley-VCH.
Pt surface | TON (TOF) | Ea/(kJ mol‒1) | a(C4H6) | a(H2) |
---|---|---|---|---|
Pt(111) a | 80 | 38 | 0 | 1 |
Pt(100) a | 110 | 33 | 0 | 0.5 |
Pt(110) a | 280 | 39 | 0 | 1 |
Pt foil b | (0.90) | 41 | -0.1 | 1.16 |
Pt(111) b | (0.85) | 39 | — | — |
Pt(100) b | (0.27) | 53 | — | — |
Pt(755) b | (0.71) | 41 | -0.13 | 1.12 |
Table 2 Kinetic data of 1,3-butadiene hydrogenation on platinum surfaces.
Pt surface | TON (TOF) | Ea/(kJ mol‒1) | a(C4H6) | a(H2) |
---|---|---|---|---|
Pt(111) a | 80 | 38 | 0 | 1 |
Pt(100) a | 110 | 33 | 0 | 0.5 |
Pt(110) a | 280 | 39 | 0 | 1 |
Pt foil b | (0.90) | 41 | -0.1 | 1.16 |
Pt(111) b | (0.85) | 39 | — | — |
Pt(100) b | (0.27) | 53 | — | — |
Pt(755) b | (0.71) | 41 | -0.13 | 1.12 |
Fig. 7. Structure sensitivity of Pt catalysts in the selective hydrogenation of 1,3-butadiene. (a) The apparent activation energy and reaction orders as a function of the particle size of Pt. The TOFs as a function of Pt dispersion over different catalysts: (b) Pt/Al2O3; (c) Ptm^Au/SiO2 and Pt/SiO2-SEA. Product distribution over different catalysts: (d) Pt/SiO2; (e) naked Pt nanoparticles; (f) Ptm^Au/SiO2. (a) Adapted with permission from Ref. [84]. Copyright 2017, Royal Society of Chemistry. (b) Adapted with permission from Ref. [83]. Copyright 1995, Elsevier. (c) Adapted with permission from Ref. [25]. Copyright 2018, American Chemical Society. (d) Adapted with permission from Ref. [85]. Copyright 2017, Royal Society of Chemistry. (e) Adapted with permission from Ref. [86]. Copyright 2013, American Chemical Society. Data in (f) taken from Ref. [25].
Fig. 8. Structure sensitivity of Au catalysts in the selective hydrogenation of 1,3-butadiene. (a) Evolution of the activity and TOF of supported gold catalysts in the hydrogenation of 1,3-butadiene in the presence of an excess of propylene at 333 K as a function of the average gold particle size [87]. Black and red symbols, chloride-free catalysts; blue symbols, chloride-containing catalysts. (b) The HD formation rate and TOFs over Au/TiO2(110) as a function of the gold particle size. H2-D2 exchange was performed in batch mode using a mixture of 6 Torr H2 and 6 Torr D2 at 425 K. (c) Arrhenius plots of the rate constants of HD formation over 1MLE (monolayer equivalent) Au/TiO2(110) surface with different gold particle sizes. (b,c) Adapted with permission from Ref. [88]. Copyright 2009, Wiley-VCH. (d) Reproduced with permission from Ref. [15]. Copyright 2010, American Chemical Society.
Fig. 9. (a) Catalytic performance of Pd catalysts over different carriers. Data taken from Ref. [48]. (b) BD conversion as a function of the PdH concentration over Pd/SiO2. (c) Arrhenius plots of the TOFs in 1,3-butadiene hydrogenation over different oxide-supported Pd-Ni catalysts. (c) Adapted with permission from Ref. [92]. Copyright 2015, Elsevier.
Fig. 10. (a) The TONs as a function of reaction time over different carriers supported Pt catalysts; (b) Shp (butenes/butenes+butane) as a function of reaction time over different carrier supported Pt catalysts; (c) BD conversion as a function of reaction time over different zeolite-supported Pt catalysts; (d) Performance of TiO2-supported Pd catalysts with different phases and porosities. (a,b) Adapted with permission from Ref. [95]. Copyright 1990, Elsevier. (c) Adapted with permission from Ref. [56]. Copyright 2015, Royal Society of Chemistry. (d) Adapted with permission from Ref. [53]. Copyright 2018, American Chemical Society.
Fig. 11. (a) The TONs and butene selectivity as a function of reaction time over Pt/SiO2-Al2O3-B with (blue symbols) and without (black symbols) ammonia pre-treatments. Performance of Pt/Al2O3 after different treatments: (b) vacuum treatment; vacuum treatment followed by H2O (c), and ethylenediamine (d) adsorption. (e) Time course of 1,3-butadiene conversion over as-prepared Au/ZrO2-CP-1073-673 (circle), and the water-treated counterpart (triangle). With the addition of ca. 0.0021% moisture in the feed after 6 h (square), and cut of the moisture in the feed with drying for additional 2 h at 473 K (diamond). (a) Adapted with permission from Ref. [95]. Copyright 1990, Elsevier. (b?d) Adapted with permission from Ref. [83]. Copyright 1995, Elsevier. (e) Adapted with permission from Ref. [100]. Copyright 2011, Elsevier.
Fig. 12. Selective hydrogenation of 1,3-butadiene over single-atom Pd catalysts. (a) Butene selectivity as a function of BD conversion; (b) product distribution at 95% BD conversion. (c) XPS Pd 3d spectra of Pd1/graphene and Pd1/C3N4; (d) BD conversion as a function of reaction temperature in 1,3-butadiene hydrogenation over Pd1/graphene and Pd1/C3N4. (a,b) Reproduced with permission from Ref. [24]. Copyright 2015, American Chemical Society. (c,d) Adapted with permission from Ref. [93]. Copyright 2019, American Chemical Society.
Fig. 13. Selective hydrogenation of 1,3-butadiene over single-atom Pt catalysts. (a) Schematic illustration of the 0.2Pt/m-Al2O3-H2 synthesis process. Aluminum isopropoxide, P123, and H2PtCl6 mixture ethanolic solution self-assembled into a gel after ethanol evaporation at 333 K. The gel was calcined at 673 K and reduced in 5% H2/N2 at 673 K, forming the single atom catalyst 0.2Pt/m-Al2O3-H2 [55]. Comparison on the performance of different Pt catalysts in 1,3-butadiene hydrogenation: (b) The selectivity of butenes and conversion of propene at 303 and 323 K [55], and (c) the selectivity of butenes and the conversion of 1,3-butadieneat 473 K for 24 h [55]. (d?g) HAADF-STEM images with (f) colored intensity map from selected region [73]. (h) EXAFS k3-weighted Fourier transforms [73]. (i) Conversion and butene selectivity as a function of temperature over Cu15/Al2O3, Pt0.1Cu14/Al2O3 and Pt0.2Cu12/Al2O3 NPs (1,3-butadiene(1.25%), H2 (20%) and He (balance), GHSV = 1200 h?1) [73]. (j) Total rate of BD hydrogenation as a function of temperature over the Pt and Cu sites of the Pt/Cu(111) single-atom catalyst where the surface concentration of the single Pt site is 0.02 ML (monolayer) and that of the Cu site is 0.98 ML. The pressure is fixed at 1 bar. Adapted with permission from Ref. [26]. Copyright 2018, American Chemical Society.
Fig. 14. (a) Conversion of 1,3-butadiene at 393 K over Au/ZrO2 catalysts containing different gold contents: 0 (triangle), 0.01 (circle), 0.05 (pentagon), 0.08 (hexagon), 0.23 (square), and 0.76 (diamond). Adapted with permission from Ref. [31]. Copyright 2005, Wiley-VCH. (b) The TOFs of Au/ZrO2 as a function of average particle size of gold. Data taken from Ref. [31].
Fig. 15. Selectivity plots as a function of conversion over different catalysts in the selective hydrogenation of 1,3-butadiene: (a) MgO-supported Rh(C2H4)2 complexes; (b) zeolite-supported Rh(C2H4)2 complexes; (c) zeolite-supported Rh(CO)2 complexes; (d) zeolite-supported Rh(C2H4)2 complexes after treatment at 353 K in H2 for 1 h; (e) MgO-supported Rh(C2H4)2 complexes after treatment at 353 K in H2 for 1 h; (f) MgO-supported Rh(C2H4)2 complexes after treatment at 353 K in H2 for 1 h and then treated with a pulse of CO. Selectivity plots for MgO-supported rhodium dimers in the absence (g) and in the presence (h) of CO ligands in the hydrogenation of 1,3-butadiene. Conditions: feed composition: 2 vol% 1,3-butadiene, balanced with H2; total pressure = 1 bar. 1-butene (circle), trans-2-butene (diamond), cis-2-butene (square), butane (triangle). Reproduced with permission from Ref. [38]. Copyright 2012, American Chemical Society.
Fig. 16. Selective hydrogenation of 1,3-butadiene over ionic liquids with different metal nanoparticles. Pd nanoparticles with (a) and without (b) the participant of BMI·BF4 under 313 K and 4 bar. (a,b) Adapted with permission from Ref. [54]. Copyright 2005, Wiley-VCH. (c) Binding energies of 1,3-butadiene and its partial hydrogenation products on Ni6 and Ni6 + IL. Data taken from Ref. [64]. (d) Optimized geometries of the (I) Ni6 cluster and the (II) Ni6 + IL; electrostatic potential maps of (III) Ni6 cluster and the (IV) Ni6 + IL. Red and blue regions in electrostatic potential maps represent the electron rich and deficient regions, respectively. Reproduced with permission from Ref. [64]. Copyright 2017, Elsevier.
Fig. 17. (a) TEM image of SiO2-encapsulated Pd nanocubes; (b) High-resolution TEM image of 30Al/Pd/Al2O3; Butene selectivity as a function of BD conversion over unsupported and SiO2-encapsulated Pd nanocubes, and the reference SiO2-supported catalysts (c), and Pd/Al2O3 with and without ALD alumina overcoats (d). (e) The synthesis of well dispersed Co species incorporated on porous carbon from metal-organic frameworks (Co-BTC-T); (f) catalytic performance of Co-BTC-T in 1,3-butadiene hydrogenation. (g) Energy dispersive X-ray spectroscopic maps showing core-shell (250 °C), partially alloyed (350 °C) and alloyed (450 °C) Au@Pd@SiO2 nanorods with XPd (atomic Pd fraction) = 0.08 and NPd (the number of Pd layer) = 2. (h) Catalytic activity and selectivity of different structure Au@Pd@SiO2 nanorods in the selective hydrogenation of butadiene. For all catalytic tests, 20 mg catalyst with 0.02 wt% metal was used. The reaction mixture consisted of 0.3% butadiene, 30% propene, 20% H2 and an amount of He to balance the flow rate to 50 mL min?1. (i) Au@Pd@SiO2 nanorods with variable Pd content and shell thickness were used: XPd = 0.04, NPd = 1 (red); XPd = 0.08, NPd = 2 (orange); XPd = 0.21, NPd = 5 (green); XPd = 0.32, NPd = 6 (blue); and Au@SiO2 (brown) and Pd@SiO2 (black) reference samples containing spherical 3.0 and 6.1 nm particles, respectively. Activity expressed as TOF (s?1) at 45 °C (left axis) and the selectivity at 98% butadiene conversion (right axis) as a function of the atomic Pd fraction. (a,c) Adapted with permission from Ref. [115]. Copyright 2015, Elsevier. (b,d) Adapted with permission from Ref. [70]. Copyright 2015, American Chemical Society. (e,f) Reproduced with permission from Ref. [65]. Copyright 2019, Elsevier. (g-i) Adapted with permission from Ref. [67]. Copyright 2021, Macmillan Publishers Ltd.: Nature.
Fig. 18. Shape effect of ZnO as the carrier for Pd catalysts in the hydrogenation of 1,3-butadiene. (a) TEM images of different shaped ZnO-supported Pd catalysts; (b) In situ HEXRD during temperature-programmed reduction for different shaped ZnO supported Pd catalysts; (c) The product distribution in BD hydrogenation. I, Pd-TiO2; II, Pd-ZnO-tetrapod; III, Pd-ZnO-brick; IV, Pd-ZnO-needle. (a?c) Adapted with permission from Ref. [52]. Copyright 2017, American Chemical Society.
Fig. 20. (a) Different adsorption modes for 1,3-butadiene on Pt(111) surfaces: I, di-σ; II, di-p-cis; III, di-p trans; IV, 1,2-di-σ-3,4-p; V, 1,4-di-σ-2,3-p; VI, 1,2,3,4-tetra-σ. (b) Energy profiles of 1,3-butadiene hydrogenation over Pt(111) surface via the 1B4R (top) and 2B1R (bottom) intermediates. (c) Hydrogenation of 2-butenyl on Pt(111) surface from the adsorbed h3 (R-h3) or partially decoordinated h1 (R-h1) reactant via a three transition state (TS-3c) or a six-center one (TS-6c), forming 1-butene in a di-σ (1B-di-σ) or p (1B-p) mode, respectively. (d) Potential energy profiles for the formation of butene from 1,3-butadienehydrogenation with the tetra-σ and the di-σ configurations on the Pt(111) surface. (a) Reproduced with permission from Ref. [118]. Copyright 2004, Elsevier. (b) Adapted with permission from Ref. [119]. Copyright 2005, American Chemical Society. (c) Reproduced with permission from Ref. [120]. Copyright 2010, American Chemical Society. (d) Reproduced with permission from Ref. [84]. Copyright 2017, Royal Society of Chemistry.
Fig. 21. (a) In situ SFG vibrational spectra of reaction intermediates produced on different sized Pt nanoparticle catalysts during 1,3-BD hydrogenation (T = 348 K with 10 Torr of 1,3-BD, 100 Torr of H2, and 650 Torr of Ar). Blue dots and red dashed lines represent averages and standard deviations of nine SFG spectra, respectively, while black lines represent optimized model SFG spectra. (b) Normalized SFG for the CH2(a)/CH3(p,up) and CH3(s) vibrational modes as a function of nanoparticle size. (c) The proposed initial reaction pathways over Pt nanoparticles of different sizes. Reproduced with permission from Ref. [86]. Copyright 2013, American Chemical Society.
Fig. 22. (a) Reaction scheme for 1,3-butadiene hydrogenation over Au(111). Insets show the adsorption modes of reactant (R), transition state (TS), and product (P). Reproduced with permission from Ref. [59]. Copyright 2014, Elsevier. (b) Temperature and gas atmosphere profile during the hydrogenation of 1,3-butadiene under operando conditions [123]. (c) The overall energy profiles and reaction snapshots for 1,3-butadiene hydrogenation over AuOH/t-ZrO2 (203) surface. Reproduced with permission from Ref. [110]. Copyright 2006, Wiley-VCH.
Fig. 23. (a) The hydrogenation rate as a function of carbon coverage over Pt(110) surface. The dotted line corresponds to the curve A = A0 × (1 - qc2). (b) Arrhenius plots on the clean Pt(110) surface and the carbon-covered surface. (c) High-angle annular dark-field scanning transmission electron micrographs of supported gold catalysts. The red of smaller than 1 nm. (d) Evolution of the 1,3-butadiene conversion as a function of time-on-stream over the Au/TiO2 to the Au/SiO2-A50 catalysts at 473 K. Conditions: 60 mg catalysts, 0.3% 1,3-butadiene, 30% propene, 20% hydrogen, and He for balance, and flow rate was 50 mL min?1. (e) Evolution of the 1,3-butadiene conversion during the hydrogenation of 1,3-butadiene over Au/TiO2 in time order, after air regeneration (50 mL min?1, at 723 K for 1.5 h), and after consecutive air-regeneration (50 mL min?1, at 723 K for 1.5 h) and reduction (50 mL min?1, at 723 K for 3 h). Reaction conditions were the same as in (d). (f) The conversion of 1,3-butadieneas a function of water vapor over Au/g-Al2O3 catalysts. (g) Optimized adsorption modes for 1,3-butadiene hydrogenation in the presence (left) and absence (right) of water on Au(111). (a,b) Reproduced with permission from Ref. [126]. Copyright 1987, Elsevier. (c?e) Reproduced with permission from Ref. [14]. Copyright 2017, American Chemical Society. (f,g) Adapted with permission from Ref. [59]. Copyright 2014, Elsevier.
|
[1] | 刘诗瑶, 巩玉同, 杨晓, 张楠楠, 刘会斌, 梁长海, 陈霄. 具有富电子镍位点的耐酸金属间化合物CaNi2Si2催化剂用于不饱和有机酸酐/酸的水相加氢[J]. 催化学报, 2023, 50(7): 260-272. |
[2] | 张锋伟, 郭河芳, 刘萌萌, 赵阳, 洪峰, 李静静, 董正平, 乔波涛. 表面应力介导的碳基Pt纳米催化剂用于硝基芳烃的高选择性加氢[J]. 催化学报, 2023, 48(5): 195-204. |
[3] | 刘丹卿, 张丙兴, 赵国强, 陈建, 潘洪革, 孙文平. 原位电化学扫描探针显微镜技术在电催化领域的应用进展[J]. 催化学报, 2023, 47(4): 93-120. |
[4] | 聂超, 龙向东, 刘琪, 王嘉, 展飞, 赵泽伦, 李炯, 席永杰, 李福伟. 原子分散Ru-P-Ru催化剂的制备及其在多类加氢中的高效应用[J]. 催化学报, 2023, 45(2): 107-119. |
[5] | 蒋亚飞, 刘锦程, 许聪俏, 李隽, 肖海. 打破合成氨反应中线性标度关系的碗型活性位点设计: 来自LaRuSi及其同构电子化物的启示[J]. 催化学报, 2022, 43(8): 2183-2192. |
[6] | 郑汉, 杨正午, 孔祥栋, 耿志刚, 曾杰. 二氧化碳电还原为甲烷的研究进展[J]. 催化学报, 2022, 43(7): 1634-1641. |
[7] | Ernest Pahuyo Delmo, 王忆安, 王菁, 朱尚乾, 李铁怀, 秦雪苹, 田一博, 赵青蓝, Juhee Jang, 王一诺, 谷猛, 张莉莉, 邵敏华. 金属有机框架-离子液体混合催化剂用于电化学还原二氧化碳生成甲烷[J]. 催化学报, 2022, 43(7): 1687-1696. |
[8] | Chuncheng Liu, Evgeny A. Uslamin, Sophie H. van Vreeswijk, Irina Yarulina, Swapna Ganapathy, Bert M. Weckhuysen, Freek Kapteijn, Evgeny A. Pidko. MFI/MEL分子筛催化甲醇制烯烃反应关键参数的集成方法[J]. 催化学报, 2022, 43(7): 1879-1893. |
[9] | 吴建祥, 杨雪晶, 龚鸣. 甘油电催化氧化的研究进展:催化剂、机理和应用[J]. 催化学报, 2022, 43(12): 2966-2986. |
[10] | 苏海胜, 常晓侠, 徐冰君. 表面增强振动光谱在电催化领域的运用: 基本原理、挑战和展望[J]. 催化学报, 2022, 43(11): 2757-2771. |
[11] | 李宏, 蒋昆, 邹受忠, 蔡文斌. CO2电还原反应中的基础问题及原位振动光谱的对策[J]. 催化学报, 2022, 43(11): 2772-2791. |
[12] | 郭凯, 雷海涛, 李夏亮, 张宗尧, 王亚博, 郭鸿波, 张伟, 曹睿. 碱金属阳离子对铁卟啉电催化CO2还原的影响[J]. 催化学报, 2021, 42(9): 1439-1444. |
[13] | 周丹, 张磊磊, 刘文刚, 徐刚, 杨级, 蒋齐可, 王爱琴, 银建中. 压缩CO2中Co-N-C催化3-硝基苯乙烯选择性加氢反应动力学及相行为[J]. 催化学报, 2021, 42(9): 1617-1624. |
[14] | 洪峰, 王升扬, 张军营, 付俊红, 蒋齐可, 孙科举, 黄家辉. 金属载体强相互作用增强Au/TiO2催化剂在3-硝基苯乙烯选择性加氢反应的活性[J]. 催化学报, 2021, 42(9): 1530-1537. |
[15] | 王嘉, 尤瑞, 千坤, 潘洋, 杨玖重, 黄伟新. Cl-改性对Ag/Al2O3催化剂结构及其催化C3H6-SCR和H2/C3H6-SCR反应性能的影响[J]. 催化学报, 2021, 42(12): 2242-2253. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||