催化学报 ›› 2022, Vol. 43 ›› Issue (1): 71-91.DOI: 10.1016/S1872-2067(21)63888-3
吕宏伟a, 国文馨a, 陈敏a, 周煌a,#(), 吴宇恩a,b,*()
收稿日期:
2021-06-24
接受日期:
2021-07-06
出版日期:
2022-01-18
发布日期:
2021-11-15
通讯作者:
周煌,吴宇恩
基金资助:
Hongwei Lva, Wenxin Guoa, Min Chena, Huang Zhoua,#(), Yuen Wua,b,*()
Received:
2021-06-24
Accepted:
2021-07-06
Online:
2022-01-18
Published:
2021-11-15
Contact:
Huang Zhou,Yuen Wu
About author:
# E-mail: huangz02@mail.ustc.edu.cnSupported by:
摘要:
80%以上的工业生产过程涉及催化, 如化工生产、能源转换、制药和废物处理等等. 催化剂的使用显著提高了生产效率, 降低了生产成本, 为国民经济、地球环境和人类文明的可持续发展做出了很大贡献. 为了满足日益增长的生产需求和最大的经济效益, 开发高效、稳定、低成本的新型催化剂已成为当务之急. 金属中心负载在载体上的负载型金属催化剂因其较好的催化活性和相对较低的金属用量而受到广泛关注. 研究发现, 负载型结构可增强传热和传质并增加活性金属中心的分散度, 从而影响催化性能. 此外, 负载金属的颗粒尺寸对催化剂的性能有很大影响. 迄今为止, 科学家们一直在通过减小金属颗粒尺寸和提高原子利用效率来提高催化剂的活性. 原子级尺寸的颗粒通常表现出与大尺寸颗粒显着不同的物理和化学性质, 而当活性位点的尺寸缩小到单个原子时, 单原子催化剂的概念应运而生. 对于单原子催化剂, 金属原子中心通过配位被载体中的缺陷锚定, 从而调整金属原子的电子云分布. 这种配位调整使得单原子催化剂拥有与传统催化剂不同的性能. 作为催化领域的新前沿, 单原子催化剂已经在许多催化反应中表现出前所未有的活性和选择性. 然而, 许多报道的单原子催化剂在高温环境或长期催化应用中容易受到奥斯特瓦尔德熟化过程的影响, 从而导致催化剂烧结和失活. 而烧结的原因在于金属原子和载体之间较弱的相互作用. 失活催化剂的再生和回收将大大增加工业生产的时间和经济成本. 因此, 开发具有优异热稳定性的单原子催化剂以满足工业需求是十分必要的.
本综述首先总结了近年来关于热稳定型单原子催化剂合成方法的基础研究, 并从原子尺度上分析了这些方法所构建的金属中心的结构形态和配位环境. 此外, 结合近些年的研究中新的表征技术与理论计算手段解释了热稳定性的来源. 重点讨论了热稳定单原子催化剂的实际催化应用. 分析了热稳定单原子催化剂在热催化应用中的独特作用机理、并尝试为确定催化过程中真正的活性中心以及通过原子级调控手段进行高活性热稳定单原子催化剂的合成提供理论指导. 最后总结了热稳定单原子催化剂发展的主要问题, 并简要分析了单原子催化领域的研究挑战和发展前景.
吕宏伟, 国文馨, 陈敏, 周煌, 吴宇恩. 热稳定单原子催化剂的理性构筑: 从原子级结构到实际应用[J]. 催化学报, 2022, 43(1): 71-91.
Hongwei Lv, Wenxin Guo, Min Chen, Huang Zhou, Yuen Wu. Rational construction of thermally stable single atom catalysts: From atomic structure to practical applications[J]. Chinese Journal of Catalysis, 2022, 43(1): 71-91.
Fig. 1. Synthesis of thermally stable SACs by high temperature pyrolysis. (a) The synthesis of Co SAs/N-C. Adapted with permission from Ref. [29]. Copyright 2016, Wiley-VCH. (b) Schematic of the formation of FePc-20@ZIF-8 composite. Adapted with permission from Ref. [57]. Copyright 2018, American Chemical Society. (c) Schematic of atomically dispersed MnN4 site catalyst synthesis. Adapted with permission from Ref. [36]. Copyright 2018, Springer Nature. (d) Schematic illustration of synthetic route of Pd1@ZrO2. Adapted with permission from Ref. [58]. Copyright 2019, American Chemical Society. (e) The synthesis of Co-N5/HNPCSs. Adapted with permission from Ref. [59]. Copyright 2018, American Chemical Society. (f) Scheme illustrating the formation mechanisms of Cu SAC/S-N. Adapted with permission from Ref. [60]. Copyright 2020, American Chemical Society.
Fig. 2. Synthesis of thermally stable SACs by impregnation /Co-precipitation-calcination. (a) Synthesis process of the 0.2Pt/m-Al2O3-H2. Adapted with permission from Ref. [80]. Copyright 2017, Springer Nature. (b) The evolution of Pt species on Fe2O3 in different conditions. Adapted with permission from Ref. [81]. Copyright 2019, Springer Nature.
Fig. 3. Synthesis of thermally stable SACs by high temperature migration. (a) Thermal migration and evolution process of Pt species on the surface of different supports. Adapted with permission from Ref. [85]. Copyright 2016, American Association for the Advancement of Science. The preparation of Cu-SAs/N-C via high temperature migration; (b) Apparatus diagram; (c) Proposed reaction mechanism. (b,c) Adapted with permission from Ref. [37]. Copyright 2018, Springer Nature. (d) Schematic diagram of preparation for Co-SAs/N-C, Co-NPs/N-C and N-C catalysts. Adapted with permission from Ref. [86]. Copyright 2020, Springer Nature. (e) Schematic illustration of the fabrication of H-CPs. Adapted with permission from Ref. [87], Copyright 2019, Elsevier Inc.
Fig. 4. Synthesis of thermally stable SACs by nitrogen-doped thermal atomization. (a) The evolution of Pd nanoparticles to Pd single atoms in CN matrix. Adapted with permission from Ref. [35]. Copyright 2018, Springer Nature. (b) The proposed formation mechanisms of CNT@PNC/Ni SAs. Adapted with permission from Ref. [90]. Copyright 2019, Wiley-VCH. (c-g) Schematic illustrations and TEM images for the preparation of Pd SAs/TiO2. Adapted with permission from Ref. [42]. Copyright 2020, Springer Nature. (h) Schematic illustration of the synthesis of the hollow carbon decorated with cobalt nanoparticles. Adapted with permission from Ref. [91]. Copyright 2018, Springer Nature. (i,j) Schematic illustration and structure images presenting the transformation of Pt nanoparticles to Pt single atoms. Scale bar: 2 nm. Adapted with permission from Ref. [39]. Copyright 2019, Wiley-VCH.
Fig. 5. Synthesis of thermally stable SACs by other ingenious methods. (a) Microwave-assisted synthesis for preparation of Co SACs. Adapted with permission from Ref. [94]. Copyright 2018, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (b) shockwave method for synthesizing and stabilizing single atoms; (c) Temperature evolution during the shockwave synthesis; (d) A ten-pulse shock heating pattern in each cycle with a high-temperature on state and a low temperature off state. (b-d) Adapted with permission from Ref. [41]. Copyright 2019, Springer Nature. (e) Preparation of SACs with the protection of ionic liquids. Adapted with permission from Ref. [95]. Copyright 2019, Elsevier Inc. (f) electric flash strategy for synthesis of Co SACs. (I) Plasma arc formed by a 20 kV DC supply module. (II) Spark pulse generated by a multistage Marx circuit. Adapted with permission from Ref. [96]. Copyright 2021 Wiley-VCH GmbH.
Fig. 6. Catalytic performance of thermally stable SACs for CO oxidation reaction. (a) CO conversion ability of the 0.09Au/FeOx and 0.03Au1/FeOx catalysts. Adapted with permission from Ref. [101]. Copyright 2015, Tsinghua University Press and Springer-Verlag Berlin Heidelberg. (b) CO oxidation performance of different catalysts; (c) Proposed CO oxidation mechanism on Pt/CeO2. (b,c) Adapted with permission from Ref. [102]. Copyright 2017, American Association for the Advancement of Science. (d) CO oxidation performance of Au-SA/Per-TiO2 and Au-SA/Def-TiO2; (e) Local atomic structure of the catalysts. (d,e) Adapted with permission from Ref. [78]. Copyright 2018, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (f) CO conversion over different Pt/CeO2 catalysts. Adapted with permission from Ref. [103]. Copyright 2018, American Chemical Society. (g) CO oxidation ability of (Fe,Co)/N-C, Co SAs/N-C, and Fe SAs/N-C; (h) The band decomposed charge density of HOMO and LUMO levels. (isosurface: 0.02 e/Å3). (g,h) Adapted with permission from Ref. [104]. Copyright 2020, American Chemical Society.
Fig. 7. Catalytic performance of thermally stable SACs for CH4 oxidation reaction. (a) CH4 oxidation performance of different catalysts; (b) Reaction pathway of methane conversion to CH3OH, CH3OOH, HOCH2OOH, and HCOOH and the activation energy of each step (unit, eV). (a,b) Adapted with permission from Ref. [34]. Copyright 2018, Elsevier Inc. (c) Dynamic formation of a Pt SAC during methane oxidation. STEM images of catalyst before (left-inset) and after (right-inset) reaction (scale bars, 2 nm). Adapted with permission from Ref. [81]. Copyright 2019, Springer Nature. (d) CH4 oxidation performance of the 1 wt% Cr/TiO2 catalysts for with different reaction time. Adapted with permission from Ref. [107]. Copyright 2020, Springer Nature. (e) The yield of CH4 oxidation for the prepared catalysts; (f) EXAFS fitting curve. Inset: proposed Ni-N4 architectures. (e,f) Adapted with permission from Ref. [90]. Copyright 2019, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig. 8. Catalytic performance of thermally stable SACs for hydrogenation reaction. (a) hydrogenation of 1,3-butadiene on catalyst loaded with Pd NPs and SAs. Adapted with permission from Ref. [25]. Copyright 2015, American Chemical Society. (b) Acetylene conversion for graphene loaded with Pd SAs and NPs in the selective hydrogenation of acetylene. Adapted with permission from Ref. [111]. Copyright 2019, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (c) Performance for hydrogenation of quinoline of Ru SAs/N-C and Ru NCs/C; (d) Catalytic activity and chemoselectivity of Ru SAs/N-C. Adapted with permission from Ref. [112]. Copyright 2017, American Chemical Society. (e) Styrene hydrogenation performance of Pd NPs/TiO2, Pd NPs/TiO2-900 and Pd NPs/TiO2-900 after treatment by N-doped C atomization process. Adapted with permission from Ref. [42]. Copyright 2020, Springer Nature. (f) Hydrogenation of 4-chloronitrobenzene performance of 0.1Pt loaded on various supports at elevated reduction temperatures. Adapted with permission from Ref. [113]. Copyright 2020, Springer Nature.
Fig. 9. Catalytic performance of thermally stable SACs for NOx decomposition. (a) Catalytic performances of Rh1/Co3O4 for NO reduction to N2. Adapted with permission from Ref. [21]. Copyright 2013, American Chemical Society. (b) NO conversion (black symbols) and N2 selectivity (red symbols) of the Pt-SAC (Solid symbols), Pt-Nano (Hollow symbols) in the reduction of NO with H2 at 200 °C. Adapted with permission from Ref. [128]. Copyright 2015, The Royal Society of Chemistry. (c) Optimized structure of Rh1/SiO2; (d) Calculated energy profile of the reduction of NO with CO on Rh1/SiO2 and optimized structures of the intermediates and the transition states. (c,d) Adapted with permission from Ref. [129]. Copyright 2017, American Chemical Society. (e) N2O conversion on Ru/MAFO samples; (f) Normalized Ru K-edge XANES of Ru/MAFO samples and references; (g) Fourier transforms of k3-weighted Ru K-edge EXAFS spectra of Ru/MAFO samples and references (without phase correction). (e-g) Adapted with permission from Ref. [82]. Copyright 2020, Springer Nature.
|
[1] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[2] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
[3] | 王思恺, 闵祥婷, 乔波涛, 颜宁, 张涛. 单原子催化: 追寻催化领域的“圣杯”[J]. 催化学报, 2023, 52(9): 1-13. |
[4] | 赵磊, 张震, 朱昭昭, 李平波, 蒋金霞, 杨婷婷, 熊佩, 安旭光, 牛晓滨, 齐学强, 陈俊松, 吴睿. 缺陷氮掺杂碳耦合Co-N5单原子位点用于高效锌-空气电池[J]. 催化学报, 2023, 51(8): 216-224. |
[5] | 李嘉明, 李源, 王小田, 杨直雄, 张高科. TiO2上原子分散的Fe位点促进光催化CO2还原: 增强的催化活性、 DFT计算和机制洞察[J]. 催化学报, 2023, 51(8): 145-156. |
[6] | 贡立圆, 王颖, 刘杰, 王显, 李阳, 侯帅, 武志坚, 金钊, 刘长鹏, 邢巍, 葛君杰. 重塑位于火山曲线右支的弱吸附金属单原子位点的配位环境及电子结构[J]. 催化学报, 2023, 50(7): 352-360. |
[7] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. 用于电化学能量转换反应的非贵金属单原子催化剂[J]. 催化学报, 2023, 50(7): 195-214. |
[8] | 黄正清, 贺姝玥, 班涛, 高新, 许云华, 常春然. Pt-Cu合金催化剂上甲烷无氧偶联的机理与微观动力学研究: 从单原子位点到单团簇位点[J]. 催化学报, 2023, 48(5): 90-100. |
[9] | 姜润, 乔泽龙, 许昊翔, 曹达鹏. 用于氧还原反应的Fe-N-C单原子催化剂的缺陷工程[J]. 催化学报, 2023, 48(5): 224-234. |
[10] | Eun Hyup Kim, Min Hee Lee, Jeehye Kim, Eun Cheol Ra, Ju Hyeong Lee, Jae Sung Lee. 无碱CO2加氢高效制甲酸Pd/g-C3N4催化剂的单原子和纳米簇的协同作用[J]. 催化学报, 2023, 47(4): 214-221. |
[11] | 詹麒尼, 帅婷玉, 徐慧民, 黄陈金, 张志杰, 李高仁. 单原子催化剂的合成及其在电化学能量转换中的应用[J]. 催化学报, 2023, 47(4): 32-66. |
[12] | 聂超, 龙向东, 刘琪, 王嘉, 展飞, 赵泽伦, 李炯, 席永杰, 李福伟. 原子分散Ru-P-Ru催化剂的制备及其在多类加氢中的高效应用[J]. 催化学报, 2023, 45(2): 107-119. |
[13] | 白雪, 韩璟怡, 陈思雨, 牛效迪, 管景奇. 双杂原子配位提高单原子锰位点的析氧活性[J]. 催化学报, 2023, 54(11): 212-219. |
[14] | 韩璟怡, 管景奇. 单原子催化剂大数据库[J]. 催化学报, 2023, 44(1): 1-3. |
[15] | 黎晓阳, 曹宇飞, 熊佳容, 李隽, 肖海, 李昕阳, 苟清强, 戈钧. 酶-金属单原子复合催化剂在一锅法生物-化学反应的应用[J]. 催化学报, 2023, 44(1): 139-145. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||