催化学报 ›› 2022, Vol. 43 ›› Issue (1): 71-91.DOI: 10.1016/S1872-2067(21)63888-3

• 综述 • 上一篇    下一篇

热稳定单原子催化剂的理性构筑: 从原子级结构到实际应用

吕宏伟a, 国文馨a, 陈敏a, 周煌a,#(), 吴宇恩a,b,*()   

  1. a中国科学技术大学化学系, 能源材料化学协同创新中心, 合肥微尺度物理科学国家实验室, 安徽合肥230026
    b洁净能源国家实验室(筹), 辽宁大连116023
  • 收稿日期:2021-06-24 接受日期:2021-07-06 出版日期:2022-01-18 发布日期:2021-11-15
  • 通讯作者: 周煌,吴宇恩
  • 基金资助:
    国家重点研发项目2017YFA(0208300);国家重点研发项目2017YFA(0700104);国家自然科学基金(21671180);中央高校基础研究经费(WK2060000021);中央高校基础研究经费(WK2060000025);中国博士后科学基金(BX20200317);中国博士后科学基金(2020M682030);洁净能源国家实验室合作基金(DNL201918)

Rational construction of thermally stable single atom catalysts: From atomic structure to practical applications

Hongwei Lva, Wenxin Guoa, Min Chena, Huang Zhoua,#(), Yuen Wua,b,*()   

  1. aDepartment of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei 230026, Anhui, China
    bDalian National Laboratory for Clean Energy, Dalian 116023, Liaoning, China
  • Received:2021-06-24 Accepted:2021-07-06 Online:2022-01-18 Published:2021-11-15
  • Contact: Huang Zhou,Yuen Wu
  • About author:# E-mail: huangz02@mail.ustc.edu.cn
    * E-mail: yuenwu@ustc.edu.cn;
  • Supported by:
    National Key R&D Program of China 2017YFA(0208300);National Key R&D Program of China 2017YFA(0700104);National Natural Science Foundation of China(21671180);Fundamental Research Funds for the Central Universities(WK2060000021);Fundamental Research Funds for the Central Universities(WK2060000025);China Postdoctoral Science Foundation funded project(BX20200317);China Postdoctoral Science Foundation funded project(2020M682030);Funding Support from CAS Fujian Institute of Innovation, and the DNL Cooperation Fund(DNL201918)

摘要:

80%以上的工业生产过程涉及催化, 如化工生产、能源转换、制药和废物处理等等. 催化剂的使用显著提高了生产效率, 降低了生产成本, 为国民经济、地球环境和人类文明的可持续发展做出了很大贡献. 为了满足日益增长的生产需求和最大的经济效益, 开发高效、稳定、低成本的新型催化剂已成为当务之急. 金属中心负载在载体上的负载型金属催化剂因其较好的催化活性和相对较低的金属用量而受到广泛关注. 研究发现, 负载型结构可增强传热和传质并增加活性金属中心的分散度, 从而影响催化性能. 此外, 负载金属的颗粒尺寸对催化剂的性能有很大影响. 迄今为止, 科学家们一直在通过减小金属颗粒尺寸和提高原子利用效率来提高催化剂的活性. 原子级尺寸的颗粒通常表现出与大尺寸颗粒显着不同的物理和化学性质, 而当活性位点的尺寸缩小到单个原子时, 单原子催化剂的概念应运而生. 对于单原子催化剂, 金属原子中心通过配位被载体中的缺陷锚定, 从而调整金属原子的电子云分布. 这种配位调整使得单原子催化剂拥有与传统催化剂不同的性能. 作为催化领域的新前沿, 单原子催化剂已经在许多催化反应中表现出前所未有的活性和选择性. 然而, 许多报道的单原子催化剂在高温环境或长期催化应用中容易受到奥斯特瓦尔德熟化过程的影响, 从而导致催化剂烧结和失活. 而烧结的原因在于金属原子和载体之间较弱的相互作用. 失活催化剂的再生和回收将大大增加工业生产的时间和经济成本. 因此, 开发具有优异热稳定性的单原子催化剂以满足工业需求是十分必要的.
本综述首先总结了近年来关于热稳定型单原子催化剂合成方法的基础研究, 并从原子尺度上分析了这些方法所构建的金属中心的结构形态和配位环境. 此外, 结合近些年的研究中新的表征技术与理论计算手段解释了热稳定性的来源. 重点讨论了热稳定单原子催化剂的实际催化应用. 分析了热稳定单原子催化剂在热催化应用中的独特作用机理、并尝试为确定催化过程中真正的活性中心以及通过原子级调控手段进行高活性热稳定单原子催化剂的合成提供理论指导. 最后总结了热稳定单原子催化剂发展的主要问题, 并简要分析了单原子催化领域的研究挑战和发展前景.

关键词: 热稳定性, 单原子催化剂, 烧结与失活, 合成方法, 热催化应用

Abstract:

As a new frontier in catalysis field, single-atom catalysts (SACs) hold unique electronic structure and high atom utilization, which have displayed unprecedented activity and selectivity toward a wide range of catalytic reactions. However, many reported SACs are susceptible to Ostwald ripening process in high temperature environment or long-term catalytic application, which will cause sintering and deactivation. This is due to the weak interaction between the metal atom and supports. The regeneration and recycling of deactivated catalysts will greatly increase the time and economic cost of industrial production. Therefore, it is necessary to develop SACs with excellent thermal stability to meet the industrial demands. Here, we discuss the fundamental comprehension of the stability of thermally stable SACs obtained from different synthesis methods. The influences of the speciation of metal centers and coordination environments on thermal stability are summarized. The importance of using novel in situ and operando characterizations to reveal dynamic structural evolution under synthesis and reaction conditions and to identify active sites of thermally stable SACs is highlighted. The mechanistic understanding of the unique role of thermally stable SACs in thermocatalytic application is also discussed. At last, a brief perspective on the remaining challenges and future directions of thermally stable SACs is presented.

Key words: Thermal stability, Single-atom catalyst, Sintering and deactivation, Synthesis method, Thermocatalytic application