催化学报 ›› 2022, Vol. 43 ›› Issue (1): 59-70.DOI: 10.1016/S1872-2067(21)63948-7
C. Hyun Ryu†, Yunwoo Nam†, Hyun S. Ahn*()
收稿日期:
2021-07-16
接受日期:
2021-08-02
出版日期:
2022-01-18
发布日期:
2021-11-15
通讯作者:
Hyun S. Ahn
作者简介:
第一联系人:†共同第一作者
C. Hyun Ryu†, Yunwoo Nam†, Hyun S. Ahn*()
Received:
2021-07-16
Accepted:
2021-08-02
Online:
2022-01-18
Published:
2021-11-15
Contact:
Hyun S. Ahn
About author:
* E-mail: ahnhs@yonsei.ac.kr† Contributed equally to this work.
摘要:
能源和环境问题成为制约未来可持续发展的关键问题之一, 因此, 针对不同电催化反应设计电催化剂变得越来越重要. 电催化剂因其能量效率高、制备简单和易操作等优点, 而应用于可再生能源的相关反应(如水分解和人工光合作用)中. 明确不同反应电催化剂的设计原理, 深入理解其在相关反应中的催化机理, 可进一步优化催化剂性能.
本文综述了扫描电化学显微镜(SECM)应用于电催化反应的历程、关键方法以及一些代表性的工作, 阐明了电催化剂的工作机理以推进电催化剂的设计. 本文还介绍了为提高SECM的空间分辨率而尝试的纳米尺寸电极方面的新进展, 分享了纳米电极在以前研究无法涉及的单一催化实体方面的应用.
C. Hyun Ryu, Yunwoo Nam, Hyun S. Ahn. 扫描电化学显微镜在电催化表面反应分析中的现代应用[J]. 催化学报, 2022, 43(1): 59-70.
C. Hyun Ryu, Yunwoo Nam, Hyun S. Ahn. Modern applications of scanning electrochemical microscopy in the analysis of electrocatalytic surface reactions[J]. Chinese Journal of Catalysis, 2022, 43(1): 59-70.
Fig. 2. SECM feedback modes. (a) steady state current situation; (b) positive feedback; (c) negative feedback; (d) approach feedback of positive feedback and negative feedback.
Fig. 4. Catalyst array fabrication and SECM images. (a) Schematic of the dispenser setup for the preparation of catalyst spots and sequence of steps for the deposition of catalyst precursor solutions; SEM images of typical binary (Pd-Co) (b) and ternary (c) catalyst arrays; SECM images for oxygen reduction reaction in acidic media of binary (d) and ternary (e) catalyst arrays. Adapted with permission from Ref. [19]. Copyright 2005, American Chemical Society.
Fig. 5. Nanostructured interfaces as electrocatalytic process active sites. (a) Defects such as step edges (SE) lead to nonuniform reactivity to single crystal surfaces which is nominally structurally and compositionally uniform; (b) Extended heterogeneous surfaces, such as polycrystalline metals, comprise structurally (e.g., grains and grain boundaries, GBs) and/or compositionally disparate (e.g., inclusions) sites that can possess vastly different intrinsic electrochemical activities; (c) Nanoparticles (NPs), possessing size-, shape-, and structure-dependent activity, may interact physicochemically (diffusional coupling, aggregation, sintering, etc.) during electrocatalytic turnover (i), as well as undergo dynamic interaction with the support (ii). Adapted with permission from Ref. [22]. Copyright 2019, American Chemical Society.
Fig. 6. (a) Schematic depiction of imaging ORR activities of four different types of single platinum particle by SECM; (b) Electrochemical activity map of particle array. Adapted with permission from Ref. [38]. Copyright 2010, American Chemical Society.
Fig. 7. (a) Electron transfer reactions occurring at Pt NP and HOPG; (b) SECM images for FcTMA2+/FcTMA+ coupled electron transfer reactions; (c) SECM images for H+/H2 coupled electron transfer reactions. Adapted with permission from Ref. [41]. Copyright 2016, American Chemical Society.
Fig. 8. Topographical (a) and electrochemical (b) activity map of electrochemical oxidation of [N2H5]+ on the surface of single Au nanoparticle, obtained with SECCM; (c) Normalized linear scan voltammetries at the individual active sites shown in (a). Adapted with permission from Ref. [42]. Copyright 2017, American Chemical Society.
Fig. 9. Feedback mode of oxidation/reduction of ferrocenemethanol (Fc) (a) and SG/TC of OER (c) at NiO nanosheet surface; Electrochemical activity of Fc oxidation/reduction (b) and ORR (d) map at NiO edge site. Adapted with permission from Ref. [44]. Copyright 2019, Proceedings of the National Academy of Sciences.
Fig. 10. (a,b) Electrochemical activity map of the oxidation of Fe2+ to Fe3+ at different substrate potential. Grain boundary marked with a black line shows high electrochemical activity. GB marked with a white line shows no difference compared to adjacent grains; (c) Crystal orientation map of the same area with (a,b), obtained by electron backscatter diffraction. Adapted with permission from Ref. [45]. Copyright 2013, American Chemical Society.
Fig. 11. (a,c) Schematic description of the quantification of CO2 radical dimerization and current difference according to the distance between tip and substrate. Adapted with permission from Ref. [49]. Copyright 2017, American Chemical Society. (b,d) Schematic description of the quantification of DMA radical dimerization and current plot with EC2EE model simulation. Adapted with permission from Ref. [48]. Copyright 2014, American Chemical Society.
Case | Reaction | Application | Ref. |
---|---|---|---|
ECi | Tip: O + ne- → R Solution: $\mathrm{R} \stackrel{k}{\rightarrow} \text { Products }$ Substrate: R - ne- → O | Dimethyl-p-phenylenediamine (DMPPD) oxidation | [ |
[Cp*Re(CO)2(p-N2C6H4OME)][BF4] reduction | [ | ||
Di-tert-butyl nitroxide (DTBN) oxidation | [ | ||
EC2i | Tip: O + ne- → R Solution: $\mathrm{2R} \stackrel{k}{\rightarrow} \text { Products }$ Substrate: R - ne- → O | Dimethyl Fumarate (DF) dimerization | [ |
Fumaronitrile (FN) dimerization | [ | ||
Acrylonitrile (AN) radical anion detection | [ | ||
4-nitrophenolate (ArO-) dimerization | [ | ||
Nicotinamide adenine dinucleotide (NAD) radical detection | [ | ||
Nitro radical anion dimerization | [ | ||
Superoxide interaction with 1,4-dihyropyridine | [ | ||
ECE | Tip: A + ne- → B Solution: $\mathrm{B} \stackrel{k}{\rightarrow} \text { C}$ Tip, Substrate: C + ne- → D | Lifetime of guanosine (G) radical cation | [ |
DISP | Tip: A + ne- → B Solution: $\mathrm{B} \stackrel{k}{\rightarrow} \text { C}$ Solution: $\mathrm{B+C} \stackrel{k}{\rightarrow} \text { A+D}$ Tip, Substrate: C + ne- → D | Anthracene (A) reduction | [ |
Epinephrine oxidation | [ | ||
EC` | Tip: A + ne- → B Solution: B + Y → A + Products | Amidopyrine oxidation | [ |
Aromatic Halides reduction | [ |
Table 1 Applications of approach curve analysis at each case.
Case | Reaction | Application | Ref. |
---|---|---|---|
ECi | Tip: O + ne- → R Solution: $\mathrm{R} \stackrel{k}{\rightarrow} \text { Products }$ Substrate: R - ne- → O | Dimethyl-p-phenylenediamine (DMPPD) oxidation | [ |
[Cp*Re(CO)2(p-N2C6H4OME)][BF4] reduction | [ | ||
Di-tert-butyl nitroxide (DTBN) oxidation | [ | ||
EC2i | Tip: O + ne- → R Solution: $\mathrm{2R} \stackrel{k}{\rightarrow} \text { Products }$ Substrate: R - ne- → O | Dimethyl Fumarate (DF) dimerization | [ |
Fumaronitrile (FN) dimerization | [ | ||
Acrylonitrile (AN) radical anion detection | [ | ||
4-nitrophenolate (ArO-) dimerization | [ | ||
Nicotinamide adenine dinucleotide (NAD) radical detection | [ | ||
Nitro radical anion dimerization | [ | ||
Superoxide interaction with 1,4-dihyropyridine | [ | ||
ECE | Tip: A + ne- → B Solution: $\mathrm{B} \stackrel{k}{\rightarrow} \text { C}$ Tip, Substrate: C + ne- → D | Lifetime of guanosine (G) radical cation | [ |
DISP | Tip: A + ne- → B Solution: $\mathrm{B} \stackrel{k}{\rightarrow} \text { C}$ Solution: $\mathrm{B+C} \stackrel{k}{\rightarrow} \text { A+D}$ Tip, Substrate: C + ne- → D | Anthracene (A) reduction | [ |
Epinephrine oxidation | [ | ||
EC` | Tip: A + ne- → B Solution: B + Y → A + Products | Amidopyrine oxidation | [ |
Aromatic Halides reduction | [ |
Fig. 12. (a-c) Schematic description of the SI-SECM processes. (d) Current response at the tip at the negative, positive, and SI-SECM conditions. Adapted with permission from Ref. [13]. Copyright 2008, American Chemical Society.
Fig. 13. COMSOL Multiphysics setup of SI-SECM (a) and simulation data at various rate constants (b). Adapted with permission from Ref. [13]. Copyright 2008, American Chemical Society.
Fig. 14. (a) Diagram of the external switching device; (b) Titrations of the CoPi surface activity with switching device. Adapted with permission from Ref. [69]. Copyright 2015, American Chemical Society.
Fig. 15. (a) Coulometric titration curves of Iridium. Adapted with permission from Ref. [97]. Copyright 2015, American Chemical Society. (b) Coulometric titration curve of CoPi. Adapted with permission from Ref. [98]. Copyright 2015, American Chemical Society
Fig. 16. (a) Titration curves of Ni(OH)2 and FeOOH electrodes; (b) Time-dependent titration of Ni(OH)2 at Esubs = 0.6 V; (c) Fast and slow site rate constant and fraction of fast site at various catalysts. Adapted with permission from Ref. [112]. Copyright 2016, American Chemical Society.
Fig. 17. Reactivity of MoS2 by SI-SECM. (a) A time-dependent redox titration CAs at Esubs = -0.92 V; (b) Remaining Mo titrands as a function of tdelay; amount of HER time; (c) Same as (b) but Esubs = -1.12 V. (600 mV overpotential, 31% hydride coverage); (d) Closed up the graph during tdelay ~0.20 s and the HER rate constant of MoS2 at 31% hydride coverage (Esubs = -1.12 V) was measured at ~3.8 s-1, which is the slope of graph. Adapted with permission from Ref. [123]. Copyright 2016, American Chemical Society
Fig. 18. (a) Mechanistic study of HER on Nickel by SI-SECM. Charge density obtained from interrogation transients on Nickel surface as substrate potential increases. (b) Experimental data and Simulation data. Adapted with permission from Ref. [124]. Copyright 2017, American Chemical Society.
Fig. 19. Quantification of Hads at CuAgHg thin films compared to Cu. (a) Schematic illustration of experiment; (b) Charge density versus Esubs at Cu and CuAgHg thin films; (c) Surface redox titration curves of Cu10Ag14Hg0.6 electrode at various Esubs; (d) Linear sweep voltammograms of the hydrogen evolution reaction at each catalyst deposited on a carbon UME. Adapted with permission from Ref. [125]. Copyright 2020, American Chemical Society.
|
[1] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[2] | 张季, 俞爱民, 孙成华. 非金属掺杂石墨烯异核双原子催化剂氮还原特性研究[J]. 催化学报, 2023, 52(9): 263-270. |
[3] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
[4] | 洪岩, 王琦, 阚子旺, 张禹烁, 郭晶, 李思琦, 刘松, 李斌. 电化学氮还原氨反应催化剂的最新研究进展[J]. 催化学报, 2023, 52(9): 50-78. |
[5] | 刘勇, 赵晓丽, 隆昶, 王晓艳, 邓邦为, 李康璐, 孙艳娟, 董帆. 原位构筑动态Cu/Ce(OH)x界面用于高活性、高选择性和高稳定性硝酸盐还原合成氨[J]. 催化学报, 2023, 52(9): 196-206. |
[6] | 高晖, 张恭, 程东方, 王永涛, 赵静, 李晓芝, 杜晓伟, 赵志坚, 王拓, 张鹏, 巩金龙. 构建Cu台阶位促进电催化CO2还原制醇类化学品的研究[J]. 催化学报, 2023, 52(9): 187-195. |
[7] | 江梓聪, 程蓓, 张留洋, 张振翼, 别传彪. 氧化锌基梯型异质结光催化剂[J]. 催化学报, 2023, 52(9): 32-49. |
[8] | 邹心仪, 顾均. 酸性条件下二氧化碳高效电还原策略[J]. 催化学报, 2023, 52(9): 14-31. |
[9] | 周波, 石建巧, 姜一民, 肖磊, 逯宇轩, 董帆, 陈晨, 王特华, 王双印, 邹雨芹. 强化脱氢动力学实现超低电池电压和大电流密度下抗坏血酸电氧化[J]. 催化学报, 2023, 50(7): 372-380. |
[10] | 王元男, 王立娜, 张可新, 徐靖尧, 武倩楠, 谢周兵, 安伟, 梁宵, 邹晓新. 钙钛矿氧化物在水裂解反应中的电催化研究[J]. 催化学报, 2023, 50(7): 109-125. |
[11] | 周纳, 王家志, 张宁, 王志, 王恒国, 黄岗, 鲍迪, 钟海霞, 张新波. 富含缺陷的Cu@CuTCNQ复合材料增强电催化硝酸盐还原成氨[J]. 催化学报, 2023, 50(7): 324-333. |
[12] | 李轩, 蒋兴星, 孔艳, 孙建桔, 胡琪, 柴晓燕, 杨恒攀, 何传新. GaN/In2O3的界面工程用于高效电催化CO2还原制备甲酸[J]. 催化学报, 2023, 50(7): 314-323. |
[13] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. 用于电化学能量转换反应的非贵金属单原子催化剂[J]. 催化学报, 2023, 50(7): 195-214. |
[14] | 牛青, 米林华, 陈玮, 李秋军, 钟升红, 于岩, 李留义. 基于共价有机框架的单位点光(电)催化材料的研究进展[J]. 催化学报, 2023, 50(7): 45-82. |
[15] | 欧阳玲, 梁杰, 罗永嵩, 郑冬冬, 孙圣钧, 刘倩, Mohamed S. Hamdy, 孙旭平, 应斌武. 电催化合成氨的研究进展[J]. 催化学报, 2023, 50(7): 6-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||