催化学报 ›› 2022, Vol. 43 ›› Issue (4): 1074-1083.DOI: 10.1016/S1872-2067(21)63969-4

• 论文 • 上一篇    下一篇

新型核壳Ag@AgSex纳米粒子析氢助剂: 原位表面硒化以提升TiO2的光催化产氢活性

钟威a, 许家超a, 王苹a, 朱必成b,#(), 范佳杰c, 余火根a,b,*()   

  1. a武汉理工大学硅酸盐建筑材料国家重点实验室和化学化工与生命科学学院, 湖北武汉430070
    b中国地质大学材料与化学学院太阳燃料实验室, 湖北武汉430074
    c郑州大学材料科学与工程学院, 河南郑州450002
  • 收稿日期:2021-09-22 接受日期:2021-09-22 出版日期:2022-03-05 发布日期:2022-03-01
  • 通讯作者: 朱必成,余火根
  • 基金资助:
    国家自然科学基金(51872221);国家自然科学基金(22075220);国家自然科学基金(21905219);国家自然科学基金(52073263);111项目(B18038)

Novel core-shell Ag@AgSex nanoparticle co-catalyst: In situ surface selenization for efficient photocatalytic H2 production of TiO2

Wei Zhonga, Jiachao Xua, Ping Wanga, Bicheng Zhub,#(), Jiajie Fanc, Huogen Yua,b,*()   

  1. aState Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, Hubei, China
    bLaboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, Hubei, China
    cSchool of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, Henan, China
  • Received:2021-09-22 Accepted:2021-09-22 Online:2022-03-05 Published:2022-03-01
  • Contact: Bicheng Zhu, Huogen Yu
  • Supported by:
    National Natural Science Foundation of China(51872221);National Natural Science Foundation of China(22075220);National Natural Science Foundation of China(21905219);National Natural Science Foundation of China(52073263);111 Project(B18038)

摘要:

纯相光催化材料的产氢性能主要受限于较低的电荷分离效率和缓慢的界面催化反应速率. 表面负载助催化剂因其能够实现快速转移光生电子和提供界面催化活性中心被认为是促进电荷分离和提升界面催化反应的有效手段. 贵金属类材料, 尤其是金属铂(Pt), 被认为是光催化产氢领域的理想助剂, 但储量低和价格昂贵严重制约了其大规模实际应用. 因此, 发展低成本的产氢助剂对未来光催化产氢技术的发展至关重要.
金属银(Ag)是一种优异的导电金属材料, 其高电导率(6.3 × 107S m-1)能够在光催化产氢反应中快速转移光生电子, 从而极大地抑制光生电子-空穴对的复合. 与金属Pt相比, Ag作为助剂在光催化体系中的析氢活性并不理想, 这主要归因于Ag表面缺乏有效的产氢活性位点, 使得界面催化产氢反应速率受到极大限制, 最终表现出较低的光催化产氢活性. 因此, 优化Ag表面性质并提供丰富的界面产氢活性位点对于提升Ag助剂的光催化产氢活性具有重要意义.
本文采用原位表面/界面工程策略对金属Ag助剂进行改性, 以设计高效的Ag修饰光催化材料. 首先通过一步光沉积方法制备了Ag纳米粒子修饰的TiO2光催化材料, 然后, 将金属Ag纳米粒子表面部分原位硒化为非晶态AgSex, 成功制备了新型核壳结构Ag@AgSex助剂修饰的TiO2光催化剂(TiO2/Ag@AgSex). X射线衍射、高分辨透射电镜、X射线光电子能谱等表征结果表明, 所得结构为Ag@AgSex助剂的核壳结构. 光催化结果表明, TiO2/Ag@AgSex光催化剂具有比TiO2和TiO2/Ag更高的光催化产氢速率, 其中TiO2/Ag@AgSex (20μL)表现出最高的光催化产氢速率, 是TiO2/Ag样品的2.4倍. 结合原位X射线光电子能谱和密度泛函理论计算结果认为, TiO2/Ag@AgSex光催化剂的高效产氢活性可以归因于金属Ag核和非晶AgSex壳的协同机制, 即具有优良导电性的金属Ag核可以有效且快速地转移光生电子, 而非晶态AgSex壳可以提供大量的产氢活性中心, 最终实现高效的电荷分离效率和快速的界面催化反应, 显著提升TiO2的光催化产氢活性. 综上, 本文为构建高效的Ag改性光催化剂以及开发经济高效的太阳能转换助催化剂提供了新的思路.

关键词: 光催化产氢, 助剂, 表面硒化, Ag@AgSex, 协同作用

Abstract:

Effective charge separation and rapid interfacial H2 production are imperative for the construction of efficient photocatalysts. Compared to Pt, the metallic Ag co-catalyst with its strong electron-trapping ability and excellent electronic conductivity typically exhibits an extremely limited photocatalytic H2-evolution rate owing to its sluggish interfacial H2-generation reaction. In this study, amorphous AgSex was incorporated in situ onto metallic Ag as a novel and excellent H2-evolution active site to boost the interfacial H2-generation rate of Ag nanoparticles in a TiO2/Ag system. Core-shell Ag@AgSex nanoparticle-modified TiO2 photocatalysts were prepared via a two-step pathway involving the photodeposition of metallic Ag and the selective surface selenization of metallic Ag to yield amorphous AgSex shells. The as-prepared TiO2/Ag@AgSex (20 μL) photocatalyst exhibited an excellent H2-production performance of 853.0 μmol h-1g-1, prominently outperforming the TiO2 and TiO2/Ag samples by factors of 11.6 and 2.4, respectively. Experimental investigations and DFT calculations revealed that the enhanced H2-generation activity of the TiO2/Ag@AgSex photocatalyst could be accounted by synergistic interactions of the Ag@AgSex co-catalyst. Essentially, the metallic Ag core could quickly capture and transport the photoinduced electrons from TiO2 to the amorphous AgSex shell, whereas the amorphous AgSex shell provided large active sites for boosting the interfacial H2 evolution. This study offers a facile route for the construction of novel core-shell co-catalysts for sustainable H2 evolution.

Key words: Photocatalytic H2 evolution, Co-catalyst, Surface selenization, Ag@AgSex, Synergistic effect