催化学报 ›› 2022, Vol. 43 ›› Issue (3): 636-678.DOI: 10.1016/S1872-2067(21)63945-1

• 综述 • 上一篇    下一篇

缺陷位工程在二维材料电催化析氢反应中的研究进展

唐甜蜜, 王振旅*(), 管景奇#()   

  1. 吉林大学化学学院, 物理化学研究所, 吉林长春 130021
  • 收稿日期:2021-07-10 修回日期:2021-07-10 出版日期:2022-03-18 发布日期:2022-02-18
  • 通讯作者: 王振旅,管景奇
  • 基金资助:
    国家自然科学基金(22075099);吉林省自然科学基金(20180101291JC)

A review of defect engineering in two-dimensional materials for electrocatalytic hydrogen evolution reaction

Tianmi Tang, Zhenlu Wang*(), Jingqi Guan#()   

  1. Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130021, Jilin, China
  • Received:2021-07-10 Revised:2021-07-10 Online:2022-03-18 Published:2022-02-18
  • Contact: Zhenlu Wang, Jingqi Guan
  • Supported by:
    National Natural Science Foundation of China(22075099);Natural Science Foundation of Jilin Province(20180101291JC)

摘要:

面对不可再生资源的快速消耗和环境污染的日益加重, 寻找清洁可再生能源势在必行. 氢能是一种清洁可再生的能源, 是目前最有希望替代化石燃料的一种能源. 电化学水分解可用来产生高纯氢气, 其中析氢催化剂起着至关重要的作用. 尽管贵金属铂基催化剂表现出优异的析氢性能, 然而稀缺性和高成本限制了其大规模应用. 因此, 开发高效和地球存量丰富的电催化剂是实现大规模绿色能源转换和存储技术的关键.
二维材料可分为非金属材料(如石墨烯、碳化氮和黑磷)和过渡金属基材料(如卤化物、磷酸盐、氧化物、氢氧化物和碳氮金属化合物), 具有独特的结构和电化学性能, 为研究人员进行基础科学研究和新兴应用提供了广阔的空间. 对于未修饰的二维材料, 活性位点主要位于其边缘, 而大面积的基底化学活性非常低, 因此通常表现出较差的析氢活性. 但通过利用二维材料固有的物化性质(如大比表面积、缺陷位和功能化表面来微调现有催化位点或创建新的催化活性位点, 锚定其它活性物种构建复合材料), 可以对其进行设计以提高催化析氢反应活性. 随着二维材料的快速研发, 缺陷工程已成为构建高性能电催化剂制备的常用策略. 缺陷工程可以在二维材料中创建大量的边缘和孔, 并且在基底结构中创建空位进而产生了大量的活性位点.
本文主要讨论了缺陷的基本原理, 缺陷位点的构建方法(包括边缘缺陷、空位缺陷和掺杂衍生缺陷), 不同类型缺陷对析氢反应性能的影响, 缺陷位点上析氢反应机制以及提出了对二维材料缺陷的优化策略. 通过讨论缺陷结构与催化剂性能之间的关系, 为合理构建高性能的析氢催化剂提供了有益见解. 通过在不同位置构建缺陷位点, 调整局部电子结构形成不饱和配位态, 可以优化氢吸附/解离能. 最后, 提出了二维材料缺陷目前面临的问题和挑战, 并展望了二维材料缺陷在电催化析氢反应的未来发展趋势.

关键词: 缺陷位, 析氢反应, 氢吸附/解离能, 二维材料, 空位

Abstract:

The exploration of efficient and earth-rich electrocatalysts for electrochemical reactions is critical to the implementation of large-scale green energy conversion and storage techniques. Two-dimensional (2D) materials with distinctive structural and electrochemical properties provide fertile soil for researchers to harvest basic science and emerging applications, which can be divided into metal-free materials (such as graphene, carbon nitride and black phosphorus) and transition metal-based materials (such as halogenides, phosphates, oxides, hydroxides, and MXenes). For faultless 2D materials, they usually exhibit poor electrochemical hydrogen evolution reaction (HER) activity because only edge sites can be available while the base surface is chemically inactive. Defect engineering is an effective strategy to generate active sites in 2D materials for improving electrocatalytic activity. This review presents feasible design strategies for constructing defect sites (including edge defects, vacancy defects and dopant derived defects) in 2D materials to improve their HER performance. The essential relationships between defect structures and electrocatalytic HER performance are discussed in detail, providing valuable guidance for rationally fabricating efficient HER electrocatalysts. The hydrogen adsorption/desorption energy can be optimized by constructing defect sites at different locations and by adjusting the local electronic structure to form unsaturated coordination states for efficient HER.

Key words: Defect, Hydrogen evolution reaction, Hydrogen adsorption/desorption, energy, Two-dimensional material, Vacancy