催化学报 ›› 2022, Vol. 43 ›› Issue (10): 2500-2529.DOI: 10.1016/S1872-2067(21)64045-7
张涛a,†, 韩晓驰a,†, Nhat Truong Nguyenb, 杨磊a, 周雪梅a,*()
收稿日期:
2022-01-10
接受日期:
2022-03-03
出版日期:
2022-10-18
发布日期:
2022-09-30
通讯作者:
周雪梅
作者简介:
†共同第一作者.
基金资助:
Tao Zhanga,†, Xiaochi Hana,†, Nhat Truong Nguyenb, Lei Yanga, Xuemei Zhoua,*()
Received:
2022-01-10
Accepted:
2022-03-03
Online:
2022-10-18
Published:
2022-09-30
Contact:
Xuemei Zhou
About author:
†Contributed equally to this work.
Supported by:
摘要:
化石燃料的过度开发和利用加剧了大气中二氧化碳的排放, 是导致全球气候变化严重和生态碳平衡破坏的因素之一. 利用可持续太阳能驱动的光催化技术可以将二氧化碳转化为一系列高附加值化学品, 如甲烷、甲酸、甲醛和甲醇等燃料, 因此被认为是解决能源危机和全球变暖的有效途径之一. 迄今为止, 在被开发利用的光催化剂中, 二氧化钛作为一种经济廉价、无毒、稳定和可持续的金属氧化物, 是多相光催化二氧化碳还原体系的研究重点.
本文重点综述了二氧化钛光催化剂在二氧化碳还原领域的最新研究进展, 阐述了其改性策略, 包括异质结的制备、表面功能修饰、能带结构调节和形貌设计等, 目的在于提高二氧化碳还原产物的选择性和转化率. 对二氧化钛在液相光电催化和气相光热催化二氧化碳还原的基本原理进行总结. 对三种二氧化碳还原反应体系进行讨论, 其主要内容包括: (1)阐述光催化、光电催化以及光热催化还原二氧化碳的热力学和动力学基本原理; (2)针对不同体系, 分析提高二氧化钛催化活性和还原产物选择性的方法, 包括表面改性、贵金属沉积和阴/阳离子掺杂; (3)探究密度泛函理论在二氧化碳还原中的应用, 包括但不限于二氧化碳还原的路径调控、关键中间体的吸附构型和和自由能的计算; (4)总结利用二氧化钛催化二氧化碳还原的不同方法的差异, 并分析其发展前景和挑战. 综上, 本文系统综述了二氧化钛在还原二氧化碳的相关工作, 详细分析了在光催化、光电催化和光热催化体系中二氧化碳还原的反应机制和反应原理, 为二氧化碳的催化转化和二氧化钛基光催化剂合理设计提供了参考.
张涛, 韩晓驰, Nhat Truong Nguyen, 杨磊, 周雪梅. 二氧化钛基光催化剂用于二氧化碳还原和太阳燃料的生产[J]. 催化学报, 2022, 43(10): 2500-2529.
Tao Zhang, Xiaochi Han, Nhat Truong Nguyen, Lei Yang, Xuemei Zhou. TiO2-based photocatalysts for CO2 reduction and solar fuel generation[J]. Chinese Journal of Catalysis, 2022, 43(10): 2500-2529.
Fig. 1. The global change of temperature and CO2 concentration in the atmosphere in the 19th century (grey curve). The red bars and blue bars indicate the temperature above and below the average temperature, respectively. Original graph by Dr. Howard Diamond (NOAA ARL), and re-drawn from NOAA Climate.gov [12].
Fig. 2. The Latimer-Frost diagram for CO2 reduction in a homogeneous neutral aqueous solution via multiple electron and proton reaction paths: (a) C1 products; (b) C2+ products. Re-draw from data in references [9,30,31].
Fig. 4. Illustrations of the applications of TiO2 in photocatalysis, photoelectrochemical reactions, and the photothermal catalysis, and the corresponding strategies to improve the conversion efficiency.
Fig. 5. The reduction of carbon dioxide via photocatalysis. Several paths are included in the reaction. (1) Excitation; (2) charge carrier transfer; (3) volume recombination; (4) CO2 adsorption; (5) water oxidation with holes; (6) surface recombination; (7) competing to the surface reaction is the H+ reduction; (8) re-oxidation of the reduced products.
Fig. 6. (a) Schematic drawing of the charge carrier relaxation: (1) the electronic relaxation within CB; (2) trapping into deep states (DT) and shallow states (ST); (3) band edge electron-hole recombination; (4) the trapped electron-hole recombination; (5) exciton-exciton annihilation. (b) The lifetime photo-induced reactions of TiO2.
Fig. 7. The energy diagram of n-type TiO2 semiconductor in contact with second phase for the case (a) Ef > Eredox or Ef > ΦM leading to Schottky barrier (Us) with width W, ΦM is the work function of the metal, and (b) after applying anodic bias (+ΔU), further modifying Us and W. (c-e) Accumulation of charge carrier on the surface and form three different space charge region.
Reaction | ΔHo298 (kJ mol‒1) | ΔGo298 (kJ mol‒1) |
---|---|---|
Reduction reactions of CO2 with H2O | ||
H2O(l) → H2(g) + 1/2O2(g) | — | 237 |
CO2(g) → CO(g) + 1/2O2(g) | — | 257 |
CO2(g) + H2O(l) → HCOOH(l) + 1/2O2(g) | 541 | 275 |
CO2(g) + H2O(l) → HCHO(l) + O2(g) | 795.8 | 520 |
CO2(g) + H2O(l) → CH3OH(l) + 3/2O2(g) | 727.1 | 703 |
CO2(g) + H2O(l) → CH4(g) + 2O2(g) | 890.9 | 818 |
CO2 hydrogenation reduction [ | ||
CO2 + H2 → CO + H2O(g) | 41.2 | 28.6 |
CO2 + H2 → HCOOH(l) | -31.2 | 33.0 |
CO2 + 3H2 → CH3OH + H2O(l) | -131.0 | -9.0 |
CO2 + 4H2 → CH4 + 2H2O(g) | -164.9 | -113.5 |
2CO2 + 6H2 → C2H4 + 4H2O(g) | -127.91 | -57.52 |
3CO2 + 9H2 → C3H6 + 6H2O(g) | -249.84 | -125.69 |
4CO2 + 12H2 → C4H8 + 8H2O(g) | -360.44 | -179.95 |
Table 1 Standard molar enthalpy, ΔHo298, and the Gibbs free energy, ΔGo298, for the reduction reactions of CO2.
Reaction | ΔHo298 (kJ mol‒1) | ΔGo298 (kJ mol‒1) |
---|---|---|
Reduction reactions of CO2 with H2O | ||
H2O(l) → H2(g) + 1/2O2(g) | — | 237 |
CO2(g) → CO(g) + 1/2O2(g) | — | 257 |
CO2(g) + H2O(l) → HCOOH(l) + 1/2O2(g) | 541 | 275 |
CO2(g) + H2O(l) → HCHO(l) + O2(g) | 795.8 | 520 |
CO2(g) + H2O(l) → CH3OH(l) + 3/2O2(g) | 727.1 | 703 |
CO2(g) + H2O(l) → CH4(g) + 2O2(g) | 890.9 | 818 |
CO2 hydrogenation reduction [ | ||
CO2 + H2 → CO + H2O(g) | 41.2 | 28.6 |
CO2 + H2 → HCOOH(l) | -31.2 | 33.0 |
CO2 + 3H2 → CH3OH + H2O(l) | -131.0 | -9.0 |
CO2 + 4H2 → CH4 + 2H2O(g) | -164.9 | -113.5 |
2CO2 + 6H2 → C2H4 + 4H2O(g) | -127.91 | -57.52 |
3CO2 + 9H2 → C3H6 + 6H2O(g) | -249.84 | -125.69 |
4CO2 + 12H2 → C4H8 + 8H2O(g) | -360.44 | -179.95 |
Photocatalyst | Synthesis method | Light source | Reaction condition | Yield of product (μmol·g-1·h-1) | Sel. to CH4 (%) |
---|---|---|---|---|---|
Hollow anatase TiO2 | solvothermal | 300 W Xe lamp | G.P., 50 mg cat., 0.06 MPa | CH4 (1.72) | 100 [ |
Porous TiO2 (B) | micro-wave-assisted solvothermal | 300 W Xe light | L.P. (84 mg NaHCO3 + 0.3 mL 2 mol L?1 H2SO4), 100 mg cat., 80 °C | CH4 (0.77), CH3OH (0.27) | 74.03 [ |
0D TiO2 nanotubes | hydrothermal | 300 W Xe lamp | L.P. (100 mL DI water), 50 mg cat., 101 kPa, 25 °C | CH4 (19.31) | 100 [ |
F-TiO2-x | template, hydrothermal | 300 W Xe lamp (AM 1.5) | L.P. (1 mL UP H2O), 50 mg cat.; 10 kPa, 40 °C | CO (6.52) CH4 (4.31) | 60.2 [ |
N-TiO2 | hydrothermal | 300 W Xe lamp | L.P. (0.12 g NaHCO3 + 0.3 mL 4 mol L?1 HCl) 100 mg cat. | CH3OH (0.36) | 0 [ |
Mo/TiO2 | one-step hydrothermal | 300 W Xe lamp | G.P. (20 mL CO2), L.P. (20 μL H2O), 298 K | CO (8.2), CH4 (9.8) | 54.4 [ |
Co/TiO2 (Co:Ti=0.15) | in situ grow&cal. | 300 W Xe lamp | L.P. (3 mL H2O), 100 mg cat., 80 kPa | CO (0.34), CH4 (0.18) | 34.6 [ |
Eu/TiO2 | sol-gel | 300 W Xe lamp | L.P. (100 mL H2O), 50 mg cat., 101 kPa, 25 °C | CO (4.77), CH4 (7.28) | 60.41 [ |
Ag/TiO2 | in situ growth, calcination | 300 W Xe lamp (AM 1.5) | G.P. (CO2 + 0.5% water vapor) cat. plates, 25 °C | CH4 (4.93) | 100 [ |
Black TiO2@Cu | atomic layer deposition | 300 W Xe lamp | L.P. (1 mL H2O), 10 mg cat., 20 °C | CO (23.25), CH4 (4.3) | 15.6 [ |
Ag-Mo-TiO2 | impregnation, photodeposition | mercury lamp (365 nm) | G.P. (CO2 + 4.7% water vapor) 10 mg cat., 45 °C | CH4 (37.18) | 100 [ |
CuO-TiO2 | in situ growth, calcination | mercury lamp | L.P. (30 mL methanol), 30 mg cat., 25 °C | CH3OOCH (1600) | 0 [ |
brookite TiO2/g-C3N4 | in situ grow & calcination | 300 W Xe lamp | L.P. (1.5 g Na2CO3 + 5 mL 4 nol/L H2SO4), 60 mg cat. | (λ > 400 nm) CO (0.84) CH4 (5.21) UV-vis light CO (1.27) CH4 (6.49) | 86.15 [ 79.7 [ |
TiO2-x/W18O49 | template, calcination, alkaline hydrothermal | optical fiber lamp | G.P. (CO2 gas with a flow rate of 0.42 mL min?1), 10 mg cat., 80 °C | CO (0.54) | 0 [ |
Photocatalyst | Synthesis method | Light source | Reaction condition | Yield of products (μmol g-1 h-1) | Sel. to CH4 (%) |
TiO2/ZnIn2S4 | template, in situ growth | 300 W Xe lamp | L.P. (10 mL deionized water; 1 mmol NaHCO3 + 0.3 mL 2 mol L?1 H2SO4), 25 mg cat., 80 °C | CO (9.28) CH4 (4.26) CH3OH (4.78) | 23.25 [ |
Pt-Cu2O/TiO2 | solvothermal, co-deposition | 300 W Xe lamp | L.P. (10 mL deionized water) 20 mg cat. positioned on a plate, 71 kPa, 20 °C | CO (0.05) CH4 (1.42) | 96.6 [ |
TiO2/N‐doped graphene | solvothermal, calcination | 300 W Xe lamp | L.P. (10 mL deionized water; 0.084 g NaHCO3 + 0.3 mL 2 mol L?1 H2SO4), 20 mg cat. | CO (8.68) CH4 (3.76) CH3OH (5.67) | 20.76 [ |
Au/TiO2/BiVO4 | hydrothermal, wet chemical | 300 W Xe lamp | L.P. (10 mL deionized water), 200 mg cat. | CO (2.5) CH4 (7.5) | 75 [ |
TiO2/polydopamine | template, and calcination | 300 W Xe lamp | L.P. (10 mL deionized water; 0.084 g NaHCO3 + 0.3 mL 2 mol L?1 H2SO4), 50 mg cat. | CH4 (1.4) CH3OH (0.26) | 83.33 [ |
TiO2/CsPbBr3 | electrostatic self-assembly, solvothermal | 300 W Xe lamp | L.P. (30 mL acetonitrile+100 μL water) 10 mg cat. | CO (3.97) | 100 [ |
TiO2/MXene Ti3C2 | chemical etching, calcination | 300 W Xe arc lamp | L.P. (84 mg NaHCO3 + 0.3 mL 4 mol L?1 HCl), 50 mg cat., 80 °C | CH4 (4.4) | 100 [ |
Pt@CdS/TiO2 | gas bubbling-assisted membrane reduction-precipitation | 300 W Xe lamp | G.P. (CO2 + water vapor), 20 mg cat., 0.1 MPa, 20 °C | CO (0.7) CH4 (36.8) | 90.1 [ |
TiO2/CuInS2 | electrostatic self-assembly, hydrothermal, calcination | 350 W Xe lamp | L.P. (10 mL deionized water; 0.12 g NaHCO3 + 0.25 mL 2 mol/L H2SO4), 50 mg cat. | CH4 (2.5) CH3OH (0.86) | 74.4 [ |
TiO2/CdS | anodization-calcination, successive ionic layer adsorption and reaction | 300 W Xe lamp | L.P. (84 mg NaHCO3 + 0.3 mL 4 mol L?1 HCl), 4 cm2 cat pieces | CH4 (11.9 mmol·h-1·m-2) | 100 [ |
TiO2/C3N4/Ti3C2 | hydrothermal-induced solvent-confined monomicelle self-assembly, electrostatic self-assembly | 350 W Xe lamp | L.P. (0.84 mg NaHCO3 + 0.3 mL 2 mol L?1 H2SO4), 30 mg cat. | CO (4.39) CH4 (1.20) | 21.47 [ |
MOFs/TiO2 | hydrothermal, solvothermal | 350 W Xe lamp | L.P. (5 mL ultra-pure water), 1 mg cat., 45 °C | CO (11) CH4 (1.1) | 9.0 [ |
TiO2-PdH0.43 | Solvothermal | 300 W Xe lamp with UV light | L.P. (1 mL H2O), 15 cat., 0.15 MPa | CO (3.92) CH4 (16.41) | 73.4 [ |
MoS2/TiO2/ graphene | hummers, hydrothermal & photodeposition | 350 W Xe lamp | L.P. (4 mL D.I. water), cat. 40 °C | CO (92.33) CH4 (1.693) C3H8 (1.155) | 1.8 [ |
Table 2 Records in literature of TiO2 for photocatalytic CO2 reduction.
Photocatalyst | Synthesis method | Light source | Reaction condition | Yield of product (μmol·g-1·h-1) | Sel. to CH4 (%) |
---|---|---|---|---|---|
Hollow anatase TiO2 | solvothermal | 300 W Xe lamp | G.P., 50 mg cat., 0.06 MPa | CH4 (1.72) | 100 [ |
Porous TiO2 (B) | micro-wave-assisted solvothermal | 300 W Xe light | L.P. (84 mg NaHCO3 + 0.3 mL 2 mol L?1 H2SO4), 100 mg cat., 80 °C | CH4 (0.77), CH3OH (0.27) | 74.03 [ |
0D TiO2 nanotubes | hydrothermal | 300 W Xe lamp | L.P. (100 mL DI water), 50 mg cat., 101 kPa, 25 °C | CH4 (19.31) | 100 [ |
F-TiO2-x | template, hydrothermal | 300 W Xe lamp (AM 1.5) | L.P. (1 mL UP H2O), 50 mg cat.; 10 kPa, 40 °C | CO (6.52) CH4 (4.31) | 60.2 [ |
N-TiO2 | hydrothermal | 300 W Xe lamp | L.P. (0.12 g NaHCO3 + 0.3 mL 4 mol L?1 HCl) 100 mg cat. | CH3OH (0.36) | 0 [ |
Mo/TiO2 | one-step hydrothermal | 300 W Xe lamp | G.P. (20 mL CO2), L.P. (20 μL H2O), 298 K | CO (8.2), CH4 (9.8) | 54.4 [ |
Co/TiO2 (Co:Ti=0.15) | in situ grow&cal. | 300 W Xe lamp | L.P. (3 mL H2O), 100 mg cat., 80 kPa | CO (0.34), CH4 (0.18) | 34.6 [ |
Eu/TiO2 | sol-gel | 300 W Xe lamp | L.P. (100 mL H2O), 50 mg cat., 101 kPa, 25 °C | CO (4.77), CH4 (7.28) | 60.41 [ |
Ag/TiO2 | in situ growth, calcination | 300 W Xe lamp (AM 1.5) | G.P. (CO2 + 0.5% water vapor) cat. plates, 25 °C | CH4 (4.93) | 100 [ |
Black TiO2@Cu | atomic layer deposition | 300 W Xe lamp | L.P. (1 mL H2O), 10 mg cat., 20 °C | CO (23.25), CH4 (4.3) | 15.6 [ |
Ag-Mo-TiO2 | impregnation, photodeposition | mercury lamp (365 nm) | G.P. (CO2 + 4.7% water vapor) 10 mg cat., 45 °C | CH4 (37.18) | 100 [ |
CuO-TiO2 | in situ growth, calcination | mercury lamp | L.P. (30 mL methanol), 30 mg cat., 25 °C | CH3OOCH (1600) | 0 [ |
brookite TiO2/g-C3N4 | in situ grow & calcination | 300 W Xe lamp | L.P. (1.5 g Na2CO3 + 5 mL 4 nol/L H2SO4), 60 mg cat. | (λ > 400 nm) CO (0.84) CH4 (5.21) UV-vis light CO (1.27) CH4 (6.49) | 86.15 [ 79.7 [ |
TiO2-x/W18O49 | template, calcination, alkaline hydrothermal | optical fiber lamp | G.P. (CO2 gas with a flow rate of 0.42 mL min?1), 10 mg cat., 80 °C | CO (0.54) | 0 [ |
Photocatalyst | Synthesis method | Light source | Reaction condition | Yield of products (μmol g-1 h-1) | Sel. to CH4 (%) |
TiO2/ZnIn2S4 | template, in situ growth | 300 W Xe lamp | L.P. (10 mL deionized water; 1 mmol NaHCO3 + 0.3 mL 2 mol L?1 H2SO4), 25 mg cat., 80 °C | CO (9.28) CH4 (4.26) CH3OH (4.78) | 23.25 [ |
Pt-Cu2O/TiO2 | solvothermal, co-deposition | 300 W Xe lamp | L.P. (10 mL deionized water) 20 mg cat. positioned on a plate, 71 kPa, 20 °C | CO (0.05) CH4 (1.42) | 96.6 [ |
TiO2/N‐doped graphene | solvothermal, calcination | 300 W Xe lamp | L.P. (10 mL deionized water; 0.084 g NaHCO3 + 0.3 mL 2 mol L?1 H2SO4), 20 mg cat. | CO (8.68) CH4 (3.76) CH3OH (5.67) | 20.76 [ |
Au/TiO2/BiVO4 | hydrothermal, wet chemical | 300 W Xe lamp | L.P. (10 mL deionized water), 200 mg cat. | CO (2.5) CH4 (7.5) | 75 [ |
TiO2/polydopamine | template, and calcination | 300 W Xe lamp | L.P. (10 mL deionized water; 0.084 g NaHCO3 + 0.3 mL 2 mol L?1 H2SO4), 50 mg cat. | CH4 (1.4) CH3OH (0.26) | 83.33 [ |
TiO2/CsPbBr3 | electrostatic self-assembly, solvothermal | 300 W Xe lamp | L.P. (30 mL acetonitrile+100 μL water) 10 mg cat. | CO (3.97) | 100 [ |
TiO2/MXene Ti3C2 | chemical etching, calcination | 300 W Xe arc lamp | L.P. (84 mg NaHCO3 + 0.3 mL 4 mol L?1 HCl), 50 mg cat., 80 °C | CH4 (4.4) | 100 [ |
Pt@CdS/TiO2 | gas bubbling-assisted membrane reduction-precipitation | 300 W Xe lamp | G.P. (CO2 + water vapor), 20 mg cat., 0.1 MPa, 20 °C | CO (0.7) CH4 (36.8) | 90.1 [ |
TiO2/CuInS2 | electrostatic self-assembly, hydrothermal, calcination | 350 W Xe lamp | L.P. (10 mL deionized water; 0.12 g NaHCO3 + 0.25 mL 2 mol/L H2SO4), 50 mg cat. | CH4 (2.5) CH3OH (0.86) | 74.4 [ |
TiO2/CdS | anodization-calcination, successive ionic layer adsorption and reaction | 300 W Xe lamp | L.P. (84 mg NaHCO3 + 0.3 mL 4 mol L?1 HCl), 4 cm2 cat pieces | CH4 (11.9 mmol·h-1·m-2) | 100 [ |
TiO2/C3N4/Ti3C2 | hydrothermal-induced solvent-confined monomicelle self-assembly, electrostatic self-assembly | 350 W Xe lamp | L.P. (0.84 mg NaHCO3 + 0.3 mL 2 mol L?1 H2SO4), 30 mg cat. | CO (4.39) CH4 (1.20) | 21.47 [ |
MOFs/TiO2 | hydrothermal, solvothermal | 350 W Xe lamp | L.P. (5 mL ultra-pure water), 1 mg cat., 45 °C | CO (11) CH4 (1.1) | 9.0 [ |
TiO2-PdH0.43 | Solvothermal | 300 W Xe lamp with UV light | L.P. (1 mL H2O), 15 cat., 0.15 MPa | CO (3.92) CH4 (16.41) | 73.4 [ |
MoS2/TiO2/ graphene | hummers, hydrothermal & photodeposition | 350 W Xe lamp | L.P. (4 mL D.I. water), cat. 40 °C | CO (92.33) CH4 (1.693) C3H8 (1.155) | 1.8 [ |
Fig. 9. Scheme of five different TiO2 heterojunctions. (a) Type-I; (b) type-II; (c) p-n heterojunction; (d) direct Z-scheme; (e) indirect Z-scheme; (f) S-scheme. D: electron donor; A: electron acceptor.
Fig. 10. TEM (a) and HRTEM (b) images of 3DOM CeO2/TiO2. (c) Schematic illustration of 3DOM CeO2/TiO2 under simulated visible light irradiation for CO2 photoreduction. Reprinted with permission from Ref. [121]. Copyright 2021, American Chemical Society.
Fig. 11. (a) Schematic illustration of photocatalytic HCOOH formation from CO2 over InP/[MCE]s under simulated visible light irradiation. (b) Photocatalytic production analysis via Isotope tracer. Reprinted with permission from Ref. [143]. Copyright 2011, Journal of the American Chemical Society.
Fig. 12. (a) High-resolution XP spectra measured in dark or under irradiation of UV light. (a) Ti 2p; (b) O 1s; (c) Br 3d. The electrostatic potentials of anatase TiO2 (d), rutile TiO2 (e) and CsPdBr3 (f). (g) Possible photocatalytic mechanism of CsPdBr3/TiO2 under visible light irradiation. (h) Transient adsorption photoluminescent spectra for TiO2 and CsPdBr3/TiO2 under the excitation wavelength of 450 and 520 nm, respectively. Reprinted with permission [113]. Copyright 2020, The authors.
Fig. 13. (a) AFM image of CdS/pyrene-alttriphenylamine. PT composite; Surface potential under dark (b) and surface potential under illumination (c). (d) Distribution of surface potential in the region A and B under dark and illumination, respectively. (e) The schematic illustration of photoirradiation KPFM. Reprinted with permission from Ref. [154]. Copyright 2021, Wiley-VCH.
Fig. 15. SEM image (a) and TEM image (b) of Ag@TiO2. (c) CH4 evolution in the reaction cell over time under AM1.5 solar simulator irradiation. (d) Proposed mechanism of CO2 photoconversion to CH4 by Core-Shell Ag@TiO2. Reprinted with permission from Ref. [103]. Copyright 2019, American Chemical Society.
Fig. 16. Photocatalytic activity of CO2 into CH4 (a), and (b) over different Er1 modified carbon nitride. (c) The calculated free-energy diagram for CO2 reduction to CO and CH4 and on the adsorption configurations of intermediates over HD-Er1/CN-NT. Reproduced with permission [72]. Copyright 2020, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig. 17. (a) Schematic illustration of the basic mechanism of the TiO2 photocatalytic process. (b) Comparison of the photocatalytic activity of the samples with common photocatalysts under visible light, calculated according to the amounts evolved in 6 h. Reprinted with permission from Ref. [101]. Copyright 2015, the Royal Society of Chemistry.
Fig. 20. (a) The simulated state of CO2 adsorption on the basic oxide (001) surfaces. Total adsorption energy (b) and adsorption energy (c) broken down into strain and bonded components for CO2 adsorption on the basic oxide (MgO, SrO, CaO, and BaO) surfaces. (d) Adsorption energies for intermediate species CO2, COOH, and CO on TiO2, 0.5 ML SrO/TiO2, and 1 ML SrO/TiO2. Reprinted with permission from Ref. [228]. Copyright 2016, Royal Society of Chemistry.
Fig. 21. A schematic illustration for a photoelectrochemical setup for CO2 reduction. Several paths are included in the reaction: (1) excitation, (2) charge carrier transfer, (3) electrons flow from the working electrode to the counter electrode, (4) O2 evolution with holes, (5) CO2 adsorption, and (6) CO2 reduction.
Fig. 22. Schematic illustration of a three-electrode CO2 reduction configuration of a PEC cell. (a) A semiconductor serving as a photocathode. (b) A semiconductor serving as a photoanode. (c) Semiconductors serving as both a photocathode and a photoanode.
Reaction | Potential (V) vs. NHE at pH = 7 | |
---|---|---|
Oxidation potentials of H2O | ||
H2O + 2h+ → 1/2O2 + 2H+ | 0.82 | (1.1) |
H2O + h+ → •OH + 2H+ | 2.27 | (1.2) |
Production of C1 products | ||
CO2 + e- → CO2• | -1.90 | (1.3) |
CO2 + 2H+ + 2e- → HCOOH | -0.61 | (1.4) |
CO2 + 2H+ + 2e- → CO + H2O | -0.53 | (1.5) |
CO2 + 4H+ + 4e- → HCHO + H2O | -0.48 | (1.6) |
CO2 + 6H+ + 6e- → CH3OH + 2H2O | -0.38 | (1.7) |
CO2 + 8H+ + 8e- → CH4 + 2H2O | -0.24 | (1.8) |
Production of C2 products | ||
CO2 + 9H+ + 12e- → C2H5OH + 12OH- | -0.33 | (1.9) |
3CO2 + 13H2O + 18e- → C3H7OH + 18OH- | -0.32 | (1.10) |
2CO2 + 8H2O +12e- → C2H4 + 12OH- | -0.34 | (1.11) |
2CO2 + 2H+ + 2e- → H2C2O4 | -0.80 | (1.12) |
2CO2 + 14H+ + 14e- → C2H6 + 4 H2O | -0.27 | (1.13) |
Reduction of potentials of H+ | ||
2H+ + 2e- → H2 | -0.41 | (1.10) |
Table 3 The possible reactions in the reduction of CO2 and corresponding potentials (vs. NHE. 25 °C, 1 atm).
Reaction | Potential (V) vs. NHE at pH = 7 | |
---|---|---|
Oxidation potentials of H2O | ||
H2O + 2h+ → 1/2O2 + 2H+ | 0.82 | (1.1) |
H2O + h+ → •OH + 2H+ | 2.27 | (1.2) |
Production of C1 products | ||
CO2 + e- → CO2• | -1.90 | (1.3) |
CO2 + 2H+ + 2e- → HCOOH | -0.61 | (1.4) |
CO2 + 2H+ + 2e- → CO + H2O | -0.53 | (1.5) |
CO2 + 4H+ + 4e- → HCHO + H2O | -0.48 | (1.6) |
CO2 + 6H+ + 6e- → CH3OH + 2H2O | -0.38 | (1.7) |
CO2 + 8H+ + 8e- → CH4 + 2H2O | -0.24 | (1.8) |
Production of C2 products | ||
CO2 + 9H+ + 12e- → C2H5OH + 12OH- | -0.33 | (1.9) |
3CO2 + 13H2O + 18e- → C3H7OH + 18OH- | -0.32 | (1.10) |
2CO2 + 8H2O +12e- → C2H4 + 12OH- | -0.34 | (1.11) |
2CO2 + 2H+ + 2e- → H2C2O4 | -0.80 | (1.12) |
2CO2 + 14H+ + 14e- → C2H6 + 4 H2O | -0.27 | (1.13) |
Reduction of potentials of H+ | ||
2H+ + 2e- → H2 | -0.41 | (1.10) |
Anode | Light source | Product | Reaction rate | Selectivity |
---|---|---|---|---|
FeS2/TiO2 NTs | 500 W Xe lamp (λ ≥ 420 nm) | CH3OH | 91.7 μmol h-1 L-1 | 100% [ |
Cu3(BTC)2@TiO2 | 300 W Xe lamp (< 400 nm) | CH4 | 56.6 μmol cm-2 h-1 | 100% [ |
TiO2 | Xe-arc lamp 320-410 nm | HCOOH, CH3COOH, C2H5COOH, CH3OH, CH3CH2OH | 5040 nmol cm-2 h-1 | HCOOH 59% [ |
TiO2 (TNT) | Xe-arc lamp (320-410 nm) | HCOOH, CH3OH, CH3COOH, CH3CH2OH, C2H5COOH | 4340 nmol cm-2 h-1 | HCOOH 40% [ |
InP/TiO2 NTs | 500 W Xe lamp (λ > 420 nm) | CH3OH | 295 μmol cm-2 L-1 | 100% [ |
n-TiO2-TNT | 150 W Xe lamp | CH4, CO | 120 nmol cm-2 h-1 | CH4 86% [ |
TiO2/Pt | Xe lamp (AM 1.5) | HCOOH | 200 nmol cm-2 h-1 | 100% [ |
TiO2-ZIF-8 | 125 W mercury vapor lamp | CH3CH2OH, CH3OH | 0.6 mmol L-1 | CH3CH2OH 50% [ |
CdSeTe NSs/TiO2 NTs | 500 W Xe lamp (λ > 420 nm) | CH3OH | 1166.77 μmol L-1 | 100% [ |
Cu-RGO-TiO2 | 150 W Xe lamp (AM1.5) | CH3OH, HCOOH | 255 μmol h-1 cm-2 | CH3OH57% [ |
Au@TNT | AM 1.5 G | CH3OH, CH3CH2OH | 2550 μmol h-1 | CH3OH78% [ |
Au/N-doped TiO2 | 300-W Xe lamp | CH3COOH, CO | 233 nmol h-1 | carbon 91.5% [ |
TiO2 | 300 W Hg lamp | CO, HCOOH | 6150 ppm | CO 98% [ |
TiO2 film | 400 W Xe lamp | HCOOH | 168.8 nmol h-1 | 100% [ |
RuOx/TiO2/Ta/N | visible light (λ > 400 nm) | CO | 39 nmol cm-2 | 100% [ |
TiO2 thin film | AM 1.5 G | HCOOH, CO | 27.1 μmol h-1 | HCOOH 91% [ |
Argon-treated TiO2 | AM 1.5 G | HCOOH, CO | 108.2 mmol g-1 h-1 | HCOOH 96.5% [ |
Ti3+/TiO2 | UV Lamp (254 nm) | CO, CH4 | CO FE, 50% | CO 82% [ |
Ti/TiO2-CuP | 300 W Xe lamp | CH3OH, CH3CH2OH | CH3OH 0.35 mmol L-1 | CH3OH, 91.4% [ |
TiO2 NRs | AM 1.5 G | CO, CH4 | 22 μmol·cm-2 | CO 71% [ |
Ce/CdS QDs/TiO2 NTs | 150 W Xe lamp | HCOOH | 106.7 nmol·cm-2 | 100% [ |
Table 4 Records in literature of TiO2 for photoelectrochemical CO2 reduction.
Anode | Light source | Product | Reaction rate | Selectivity |
---|---|---|---|---|
FeS2/TiO2 NTs | 500 W Xe lamp (λ ≥ 420 nm) | CH3OH | 91.7 μmol h-1 L-1 | 100% [ |
Cu3(BTC)2@TiO2 | 300 W Xe lamp (< 400 nm) | CH4 | 56.6 μmol cm-2 h-1 | 100% [ |
TiO2 | Xe-arc lamp 320-410 nm | HCOOH, CH3COOH, C2H5COOH, CH3OH, CH3CH2OH | 5040 nmol cm-2 h-1 | HCOOH 59% [ |
TiO2 (TNT) | Xe-arc lamp (320-410 nm) | HCOOH, CH3OH, CH3COOH, CH3CH2OH, C2H5COOH | 4340 nmol cm-2 h-1 | HCOOH 40% [ |
InP/TiO2 NTs | 500 W Xe lamp (λ > 420 nm) | CH3OH | 295 μmol cm-2 L-1 | 100% [ |
n-TiO2-TNT | 150 W Xe lamp | CH4, CO | 120 nmol cm-2 h-1 | CH4 86% [ |
TiO2/Pt | Xe lamp (AM 1.5) | HCOOH | 200 nmol cm-2 h-1 | 100% [ |
TiO2-ZIF-8 | 125 W mercury vapor lamp | CH3CH2OH, CH3OH | 0.6 mmol L-1 | CH3CH2OH 50% [ |
CdSeTe NSs/TiO2 NTs | 500 W Xe lamp (λ > 420 nm) | CH3OH | 1166.77 μmol L-1 | 100% [ |
Cu-RGO-TiO2 | 150 W Xe lamp (AM1.5) | CH3OH, HCOOH | 255 μmol h-1 cm-2 | CH3OH57% [ |
Au@TNT | AM 1.5 G | CH3OH, CH3CH2OH | 2550 μmol h-1 | CH3OH78% [ |
Au/N-doped TiO2 | 300-W Xe lamp | CH3COOH, CO | 233 nmol h-1 | carbon 91.5% [ |
TiO2 | 300 W Hg lamp | CO, HCOOH | 6150 ppm | CO 98% [ |
TiO2 film | 400 W Xe lamp | HCOOH | 168.8 nmol h-1 | 100% [ |
RuOx/TiO2/Ta/N | visible light (λ > 400 nm) | CO | 39 nmol cm-2 | 100% [ |
TiO2 thin film | AM 1.5 G | HCOOH, CO | 27.1 μmol h-1 | HCOOH 91% [ |
Argon-treated TiO2 | AM 1.5 G | HCOOH, CO | 108.2 mmol g-1 h-1 | HCOOH 96.5% [ |
Ti3+/TiO2 | UV Lamp (254 nm) | CO, CH4 | CO FE, 50% | CO 82% [ |
Ti/TiO2-CuP | 300 W Xe lamp | CH3OH, CH3CH2OH | CH3OH 0.35 mmol L-1 | CH3OH, 91.4% [ |
TiO2 NRs | AM 1.5 G | CO, CH4 | 22 μmol·cm-2 | CO 71% [ |
Ce/CdS QDs/TiO2 NTs | 150 W Xe lamp | HCOOH | 106.7 nmol·cm-2 | 100% [ |
Fig. 25. (a) A schematic illustration of the PEC cell with an a-Si/TiO2/Au photocathode and a BiVO4/FeOOH/NiOOH photoanode for CO2 reduction to syngas. (b) J-V curves for the photoanode and photocathode in a three-electrode configuration. Syngas production using a two-electrode configuration. (c) ST-4Au||BiVO4. (d) ST-7Au||BiVO4. Reproduced with permission [271]. Copyright 2019, Energy & Environmental Science.
Fig. 26. In situ Raman spectra for PEC CO2 conversion using Zn0.015-doped Cu2O (a), and Cu2O (b). Reproduced with permission [230]. Copyright 2021 Science China Press.
Fig. 27. The most favorable adsorption energies of Zn0.015-doped Cu2O (a,b) and Cu2O (c,d). Reprinted with permission from Ref. [230]. Copyright 2021, Science China Press.
Fig. 28. Reaction pathway based on the in situ Raman spectroscopy and first-principles simulations. Reprinted with permission from Ref. [230] Copyright 2021, Science China Press.
Catalyst | Preparation | System | Light source | Reaction temperature (°C) | Product | Selectivity to CH4 (%) | Ref. |
---|---|---|---|---|---|---|---|
TiN@TiO2@In2O3-x (OH)y | hydrothermal | vapor-solid | 300 W Xe lamp | 150 | CO | 0 | [ |
TiO2-graphene | solvothermal | vapor-solid | 300 W Xe lamp | 116.4 | CO, CH4 | 95.3 | [ |
Pd NPs/TiO2 | hydrothermal | vapor-solid | 500 W Hg lamp (λ > 254 nm) | 500 | CO | 0 | [ |
AuNPs/TiO2 | solvothermal and deposition/precipitation method | vapor-solid | 375 W IR or UV | 181 | CO, CH4 | 60 | [ |
Pt/D-TiO2-x | hydrothermal | vapor-liquid-solid | 300 W Xe lamp | 120 | CH4, CO | 87.5 | [ |
Ov-TiO2 | hydrothermal | vapor-liquid-solid | 150 W Xe lamp | 120 | CH4, CO | 55 | [ |
Ov-TiO2 | hydrothermal and calcination method | vapor-solid | UV-light | 120 | CO | 0 | [ |
TiO2-x/CoOx | impregnation and calcination | vapor-liquid-solid | 150 W UV lamp | 120 | CO, CH4 | 88.33 | [ |
Cu3(BTC)2@TiO2 | hydrothermal | vapor-liquid-solid | 300 W Xe lamp (λ < 400nm) | 40 | CH4 | 100 | [ |
CoO/Co/TiO2 | impregnation | vapor-liquid-solid | 300 W Xe lamp | 120 | CH3OH | 0 | [ |
CuS/TiO2 | hydrothermal | vapor-liquid-solid | 300 W Xe lamp | 138 | CO | 0 | [ |
TiO2 photonic crystals | template-free anodization calcination method | vapor-liquid-solid | 300 W Xe arc lamp | 22 | CH4 | 100 | [ |
Ni/TiO2 | MOF-template method | vapor-solid | 375W IR lamp | 207 | CO, CH4 | 99.6 | [ |
Bi/AgBiS2/P25 | solvothermal | vapor-liquid-solid | 300 W Xe lamp | 50 | CO, CH4 | 73.17 | [ |
Table 5 Records in literature of TiO2 for photothermal CO2 reduction.
Catalyst | Preparation | System | Light source | Reaction temperature (°C) | Product | Selectivity to CH4 (%) | Ref. |
---|---|---|---|---|---|---|---|
TiN@TiO2@In2O3-x (OH)y | hydrothermal | vapor-solid | 300 W Xe lamp | 150 | CO | 0 | [ |
TiO2-graphene | solvothermal | vapor-solid | 300 W Xe lamp | 116.4 | CO, CH4 | 95.3 | [ |
Pd NPs/TiO2 | hydrothermal | vapor-solid | 500 W Hg lamp (λ > 254 nm) | 500 | CO | 0 | [ |
AuNPs/TiO2 | solvothermal and deposition/precipitation method | vapor-solid | 375 W IR or UV | 181 | CO, CH4 | 60 | [ |
Pt/D-TiO2-x | hydrothermal | vapor-liquid-solid | 300 W Xe lamp | 120 | CH4, CO | 87.5 | [ |
Ov-TiO2 | hydrothermal | vapor-liquid-solid | 150 W Xe lamp | 120 | CH4, CO | 55 | [ |
Ov-TiO2 | hydrothermal and calcination method | vapor-solid | UV-light | 120 | CO | 0 | [ |
TiO2-x/CoOx | impregnation and calcination | vapor-liquid-solid | 150 W UV lamp | 120 | CO, CH4 | 88.33 | [ |
Cu3(BTC)2@TiO2 | hydrothermal | vapor-liquid-solid | 300 W Xe lamp (λ < 400nm) | 40 | CH4 | 100 | [ |
CoO/Co/TiO2 | impregnation | vapor-liquid-solid | 300 W Xe lamp | 120 | CH3OH | 0 | [ |
CuS/TiO2 | hydrothermal | vapor-liquid-solid | 300 W Xe lamp | 138 | CO | 0 | [ |
TiO2 photonic crystals | template-free anodization calcination method | vapor-liquid-solid | 300 W Xe arc lamp | 22 | CH4 | 100 | [ |
Ni/TiO2 | MOF-template method | vapor-solid | 375W IR lamp | 207 | CO, CH4 | 99.6 | [ |
Bi/AgBiS2/P25 | solvothermal | vapor-liquid-solid | 300 W Xe lamp | 50 | CO, CH4 | 73.17 | [ |
Fig. 31. An overview of the methods to improve the photothermal activity of TiO2 that involves the creation of surface frustrated Lewis pairs, decoration of specific photothermal co-catalysts, plasmonic nanoparticles and conventional co-catalysts.
Fig. 32. (a) Illustration of the mechanism toward the enhanced photocatalytic CO2 reduction over Pt/MgAl-LDO/TiO2 with H2O vapor. (b) HRTEM images of Pt/MgAl-LDO/TiO2. (c) IR spectra of CO2 and adsorption on TiO2 and MgAl-LDO/TiO2. Reproduced with permission [308]. Copyright 2018 Elsevier Inc.
Fig. 33. CO generation rate on different composition of photocatalysts (a) and the most active sample ncIn2O3-x(OH)y supported on different substrates (b). (c) Proposed activation mechanism for the CO2 reduction reaction. Reproduced with permission [287]. Copyright 2021 American Chemical Society.
Fig. 34. Charge density difference of the key intermediates on the catalyst surfaces. CO* (a), HCOOH* (b), HCHO* (c), and CH3OH* (d) on TiO2 and CO* (e), HCOOH* (f), HCHO* (g), and CH3OH* (h) on Au/MgO-aTiO2; (i) Illustration of the reaction mechanism on the catalyst surface. Reprinted with permission from Ref. [314]. Copyright 2021, American Chemical Society.
Fig. 35. Optimized structure of the stable configuration of anatase (101) surface (a) and Pd-loaded anatase (101) surface (b). DOS for anatase (101) (c) and Pd-loaded anatase (101) (d). Reprinted with permission from Ref. [289]. Copyright 2018, American Chemical Society.
Fig. 36. (a) PEC reduction of CO2 at Ti/TiO2NT-CuP in 0.1 mol L-1 Na2SO4 saturated with CO2 under UV-vis irradiation. (b) Different bias voltage different setup for CH3OH and C2H5OH formation at bias potential of -0.80 V. Reprinted with permission from Ref. [258]. Copyright 2022 National Academy of Sciences.
|
[1] | 邹心仪, 顾均. 酸性条件下二氧化碳高效电还原策略[J]. 催化学报, 2023, 52(9): 14-31. |
[2] | Abhishek R. Varma, Bhushan S. Shrirame, Sunil K. Maity, Deepti Agrawal, Naglis Malys, Leonardo Rios-Solis, Gopalakrishnan Kumar, Vinod Kumar. C4二醇的发酵生产及其化学催化升级为高价值化学品的研究进展[J]. 催化学报, 2023, 52(9): 99-126. |
[3] | 乔秀清, 李晨, 王紫昭, 侯东芳, 李东升. TiO2-x@C/MoO2肖特基结: 合理设计及高效电荷分离提升光催化性能[J]. 催化学报, 2023, 51(8): 66-79. |
[4] | 李轩, 蒋兴星, 孔艳, 孙建桔, 胡琪, 柴晓燕, 杨恒攀, 何传新. GaN/In2O3的界面工程用于高效电催化CO2还原制备甲酸[J]. 催化学报, 2023, 50(7): 314-323. |
[5] | 赵梦, 徐晶, 宋术岩, 张洪杰. 核壳/蛋黄壳纳米反应器用于串联催化[J]. 催化学报, 2023, 50(7): 83-108. |
[6] | 李慧珍, 陈艳蕾, 牛青, 王小凤, 刘哲源, 毕进红, 于岩, 李留义. 具有定向电荷传递能力的晶态线型聚酰亚胺材料驱动光催化CO2还原[J]. 催化学报, 2023, 49(6): 152-159. |
[7] | 李孜孜, 王嘉蔚, 黄衍钧, 欧阳钢锋. 钴(II)酞菁全氟化策略用于提升非贵金属体系中光催化还原CO2性能[J]. 催化学报, 2023, 49(6): 160-167. |
[8] | 李静静, 张锋伟, 詹新雨, 郭河芳, 张涵, 昝文艳, 孙振宇, 张献明. 酞菁镍分子结构的精确设计: 优化电子和空间效应用于CO2电还原[J]. 催化学报, 2023, 48(5): 117-126. |
[9] | 刘润泽, 邵雪, 王畅, 戴卫理, 关乃佳. 甲醇制烃反应机理: 基础及应用研究[J]. 催化学报, 2023, 47(4): 67-92. |
[10] | 詹麒尼, 帅婷玉, 徐慧民, 黄陈金, 张志杰, 李高仁. 单原子催化剂的合成及其在电化学能量转换中的应用[J]. 催化学报, 2023, 47(4): 32-66. |
[11] | 焦龙, 江海龙. 金属有机框架材料在催化领域的研究现状与展望[J]. 催化学报, 2023, 45(2): 1-5. |
[12] | 聂超, 龙向东, 刘琪, 王嘉, 展飞, 赵泽伦, 李炯, 席永杰, 李福伟. 原子分散Ru-P-Ru催化剂的制备及其在多类加氢中的高效应用[J]. 催化学报, 2023, 45(2): 107-119. |
[13] | 王伟康, 梅少斌, 蒋浩朋, 王乐乐, 唐华, 刘芹芹. 二氧化钛基S型异质结光催化剂的研究进展[J]. 催化学报, 2023, 55(12): 137-158. |
[14] | 卞磊, 张紫阳, 田昊, 田娜娜, 马智, 王中利. 具有丰富晶界的铜催化剂在气-液平衡扩散电极上高效电还原CO2制C2H4[J]. 催化学报, 2023, 54(11): 199-211. |
[15] | 钟蕤羽, 梁玉洁, 黄菲, 梁诗诺, 刘升卫. 一维g-C3N4/二维Ti3C2Tx界面调制促进光催化CO2还原活性与选择性[J]. 催化学报, 2023, 53(10): 109-122. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||