催化学报 ›› 2022, Vol. 43 ›› Issue (10): 2484-2499.DOI: 10.1016/S1872-2067(22)64102-0
关晨a,b, 岳晓阳a,b, 范佳杰c, 向全军a,b,*()
收稿日期:
2022-02-28
接受日期:
2022-04-04
出版日期:
2022-10-18
发布日期:
2022-09-30
通讯作者:
向全军
基金资助:
Chen Guana,b, Xiaoyang Yuea,b, Jiajie Fanc, Quanjun Xianga,b,*()
Received:
2022-02-28
Accepted:
2022-04-04
Online:
2022-10-18
Published:
2022-09-30
Contact:
Quanjun Xiang
Supported by:
摘要:
随着化石燃料的日益枯竭, 能源危机成为社会可持续发展所面临的主要难题和巨大挑战. 因此, 开发一种能够实现高能量转换、具备高储存效率的先进材料显得尤为迫切. MXene量子点, 一种由二维过渡金属(MXene)衍生而来的新兴材料, 因具有丰富的活性边缘原子、较好的导电性和出色的光学特性而成为能源储存与转换领域的研究热点. 一般而言, 当MXene的横向尺寸小于10 nm时, 将这种半导体纳米结构命名为MXene量子点. MXene量子点具有诸多优异的性质, 其不仅保留有二维MXene的固有特性, 同时强大的尺寸效应和量子限制效应还赋予了其更多独特的性能, 例如更强的光吸收能力、更好的导电性及生物相容性等, 从而使得MXene量子点在光催化、检测、储能、生物医学等领域表现出巨大应用潜力.
本文综述了有关MXene量子点在能源相关领域应用的最新研究进展, 包括: (1) MXene量子点在结构、电学和光学方面的基本特性; (2) MXene量子点的制备方法, 如水热/溶剂热法、熔融盐法、声微流体法、直接超声法等, 并给出了各方法的机理、制备步骤(包括具体参数)及优缺点; (3) MXene量子点与二维MXene在不同方面的比较:包括官能团、光吸收能力、能带结构、稳定性以及辅助增强光催化机理等. 重点介绍了MXene量子点在能源储存与转换领域中的应用, 包括光催化(光催化分解水产氢、光催化CO2还原、光催化固氮)、电池和超级电容器, 同时深入探究了MXene量子点在这些应用中发挥的关键作用. 分析了MXene量子点基材料在能源储存与转换领域面临的问题和挑战, 并对未来发展趋势进行了展望, 主要观点包括: (1)目前, MXene量子点的制备主要通过传统的化学法制备, 即用强腐蚀性的酸性溶液(氢氟酸或氢氟酸替代物)刻蚀, 而关于新型物理法或者无氟制备方法的研究较少, 需要进一步拓展; (2) MXene量子点的磁性、化学发光以及透明光学特性等基本性质仍处于理论预测阶段, 需采用更先进仪器设备及实验对其进行更深入的研究; (3)引入新的改性策略如核壳结构、等离子体共振效应, 单原子催化、缺陷调控等来提高MXene量子点基光催化剂的催化性能, 是未来MXene量子点基复合催化剂的发展方向.
关晨, 岳晓阳, 范佳杰, 向全军. MXene量子点(Ti3C2): 性质、合成及其在能源领域的应用[J]. 催化学报, 2022, 43(10): 2484-2499.
Chen Guan, Xiaoyang Yue, Jiajie Fan, Quanjun Xiang. MXene quantum dots of Ti3C2: Properties, synthesis, and energy-related applications[J]. Chinese Journal of Catalysis, 2022, 43(10): 2484-2499.
Fig. 2. Preparation mechanism and application of MXene quantum dots. Oxygen-containing functional groups are formed on 2D MXenes, possibly generating defects and allowing the 2D MXene to be cut into quantum dots.
Fig. 3. Schematic of the energy-level structure and carrier transfer processes of MQDs and N-MQDs. Nitrogen doping-introduced trap states close to the LUMO, achieving rapid electron migration and increasing the carrier lifetime.
Fig. 4. Charge density difference between the pure MXene QDs and heteroatom-functionalized MXene QDs. (a) Pure Ti3C2 MXene QDs. (b) N-functionalized Ti3C2 MXene. (c) P-functionalized Ti3C2 MXene QDs. (d) N-P-functionalized MQDs. Red and blue isosurfaces represent electron accumulation and depletion during the chemical bond formation process, respectively. In (b-d), the enhanced blue color indicates electron depletion, demonstrating that impurity atoms cause charge transfer and increase the PLQYs of the N-P-functionalized MQDs. Reprinted with permission from Ref. [49]. Copyright 2019, Royal Society of Chemistry.
Synthesis method | Applicable MXene (published) | Advantage | Disadvantage |
---|---|---|---|
Hydrothermal method | Ti3C2 MQDs | concise operation, large-scale production | oxidation, HF, high temperature |
Solvothermal method | Ti3C2Tx QDs | better morphology control | oxidation, HF, high temperature |
Hydrothermal/solvothermal- ultrasound method | Ti3C2 MQDs | accelerate the fragmentation of MXene into MQDs, suppress MXene oxidation | time-consuming, cumbersome process |
Molten salt synthesis | Mo2C MQDs | high atom usage, precise morphology control | high temperature, low production yield |
Acoustomicrofluidic method | Ti3C2Tz QDs | chemical-free method, preserve the structural integrity of the material | — |
Direct ultrasound method | Ti3C2 MQDs | safe, simple, fluorine-free method | time-consuming |
Table 1 Methods for preparing MQDs and differences between different routes.
Synthesis method | Applicable MXene (published) | Advantage | Disadvantage |
---|---|---|---|
Hydrothermal method | Ti3C2 MQDs | concise operation, large-scale production | oxidation, HF, high temperature |
Solvothermal method | Ti3C2Tx QDs | better morphology control | oxidation, HF, high temperature |
Hydrothermal/solvothermal- ultrasound method | Ti3C2 MQDs | accelerate the fragmentation of MXene into MQDs, suppress MXene oxidation | time-consuming, cumbersome process |
Molten salt synthesis | Mo2C MQDs | high atom usage, precise morphology control | high temperature, low production yield |
Acoustomicrofluidic method | Ti3C2Tz QDs | chemical-free method, preserve the structural integrity of the material | — |
Direct ultrasound method | Ti3C2 MQDs | safe, simple, fluorine-free method | time-consuming |
Fig. 5. Comparison of three MQD synthesis methods. (a) Hydrothermal and solvothermal synthesis processes. (b) Hydrothermal/solvother- mal-ultrasound synthesis process. (c) Molten salt synthesis process.
Fig. 6. (a) XRD patterns of the initial Mo2C/C sample without centrifugal treatment and the final Mo2C/C sample with centrifugal treatment. STEM (b) and EDS (d,e) images of Mo2C/C nanosheets. (c) HRTEM image of Mo2C QD/C nanosheets. (f) Nitrogen adsorption energy of Mo2C and C. (g) Atomic structure scheme showing the reaction pathway of N2 reduction on Mo2C sites. Green, gray, blue, and white balls represent Mo, C, N, and H atoms, respectively. Reprinted with permission from Ref. [65]. Copyright 2018, Wiley-VCH.
Fig. 7. (a) Schematic of the experimental setup: the multilayer Ti3C2Tz MXene sample is atomized on the SRBW device with the formation of layered and cracked Ti3C2Tz aerosol droplets. (b) Condensate (MXene nanosheets and MQDs) collected under different cycles (evolution along with increasing cycles). (c) Atomic force microscopic (AFM) images (including sample thickness profiles) and the corresponding thickness and mean lateral-diameter measurement distributions of the acoustically synthesized MXene nanosheets and MQDs after 10 nebulization cycles. Reprinted with permission from Ref. [67]. Copyright 2021, American Chemical Society.
Fig. 8. TEM (a) and HRTEM (b) images of Ti3C2 QD/Cu2O NW/Cu heterostructure. UV-vis diffuse reflectance spectra (c) and yields of methanol as a function of time (d). Reprinted with permission from Ref. [13]. Copyright 2018, Wiley-VCH.
Synthesis method | Crystal structure | Functional group | Fermi level (V) | Optical absorption ability |
---|---|---|---|---|
MQD | Hexagonal symmetry | -O, -F, -OH, etc. | -0.523 | Red shift |
MXene | 0.71 | Blue shift |
Table 2 Comparisons of MQDs and MXenes.
Synthesis method | Crystal structure | Functional group | Fermi level (V) | Optical absorption ability |
---|---|---|---|---|
MQD | Hexagonal symmetry | -O, -F, -OH, etc. | -0.523 | Red shift |
MXene | 0.71 | Blue shift |
Fig. 10. (a) Scanning Kelvin probe maps of BiVO4, Ti3C2 QD/BiVO4 (TC QD/BV), BiVO4@ZnIn2S4(BV@ZIS), and BiVO4@ZnIn2S4/Ti3C2 QDs (BV@ZIS/TC QDs). (b) Steady-state PL spectra. (c) Schematic of the band structure and electron-hole transfer mechanism for BV@ZIS/TC QDs. Reprinted with permission from Ref. [73]. Copyright 2021, Elsevier.
Fig. 11. (a) Simulated electron density distribution at the interface between Ti3C2Tx and ZnIn2S4 nanosheets. (Ti blue, C brown, O red, Bi purple, Mo silver, and S yellow balls. Yellow and blue areas in (a) represent higher and lower electron densities, respectively). (b) Energy band diagram of Ti3C2Tx and ZnIn2S4. Reprinted with permission from Ref. [74]. Copyright 2020, Wiley-VCH.
MQD-based material | Type of MQDs | Composite structure | Application | Performance | Ref. |
---|---|---|---|---|---|
Cu2O NW/Ti3C2 | Ti3C2 | one dimension (1D)/ zero dimension (0D) | CO2 reduction | CH3OH (78.50 μmol g-1 h-1); | [ |
TiO2/C3N4/Ti3C2 | Ti3C2 | 2D/2D/0D | CO2 reduction | CO (4.39 μmol g-1 h-1); CH4 (1.20 μmol g-1 h-1) | [ |
g-C3N4/Ti3C2 | Ti3C2 | 2D/0D | H2 evolution | H2 (5111.8 μmol g-1 h-1) | [ |
CdS/Ti3C2 | Ti3C2 | 0D/0D | H2 evolution | H2 (14342 μmol g-1 h-1) | [ |
Ti3C2/Ni MOF | Ti3C2 | 0D/2D | N2 photoreduction | NH3 (88.79 μmol gcat-1 h-1) | [ |
Ti3C2/ZnIn2S4/BiVO4 | Ti3C2 | 0D/2D/three dimension (3D) | photocatalytic overall water splitting | O2 (50.83 μmol g-1 h-1), H2 (102.67 μmol g-1 h-1) | [ |
Ti3C2/SiC | Ti3C2 | 0D/2D | photocatalytic NO pollutant removal | NO pollutant removal efficiency 74.6% | [ |
Ti3C2Tx/Ti3C2Tx/S | Ti3C2Tx | 0D/2D | lithium-sulfur batteries | when sulfur loading is 13.8 mg cm-2, volumetric capacity is 1957 mA h cm-3 and areal capacity is 13.7 mA h cm-2 | [ |
Ti3C2Tx/Ti3C2Tx/RGO | Ti3C2Tx | supercapacitors | volumetric capacity (542 F cm-3) | [ | |
Ti3C2 | Ti3C2 | 0D | multicolor cellular imaging | [ | |
N-Ti3C2 | Ti3C2 | 0D | Fe3+ detection | detectable concentration (2-500 μmol L-1), limit of detection (2 μmol L-1) | [ |
Ti3C2 | Ti3C2 | 0D | immunomodulation | — | [ |
V2C | V2C | 0D | nucleus-target low-temperature photothermal therapy | — | [ |
MoS2 QD@Ti3C2Tx QD@MWCNTs | Ti3C2Tx | electrocatalytic methanol oxidation | maximum methanol oxidation current density at 2.2 V of 160 A g-1 | [ | |
Co-Ti3C2 | Ti3C2 | 0D | photoelectrochemical water oxidation | water oxidation performance (2.99 mA cm-2 at 1.23 V vs. RHE) | [ |
Table 3 Summary of applications of various MQD-based photocatalysts.
MQD-based material | Type of MQDs | Composite structure | Application | Performance | Ref. |
---|---|---|---|---|---|
Cu2O NW/Ti3C2 | Ti3C2 | one dimension (1D)/ zero dimension (0D) | CO2 reduction | CH3OH (78.50 μmol g-1 h-1); | [ |
TiO2/C3N4/Ti3C2 | Ti3C2 | 2D/2D/0D | CO2 reduction | CO (4.39 μmol g-1 h-1); CH4 (1.20 μmol g-1 h-1) | [ |
g-C3N4/Ti3C2 | Ti3C2 | 2D/0D | H2 evolution | H2 (5111.8 μmol g-1 h-1) | [ |
CdS/Ti3C2 | Ti3C2 | 0D/0D | H2 evolution | H2 (14342 μmol g-1 h-1) | [ |
Ti3C2/Ni MOF | Ti3C2 | 0D/2D | N2 photoreduction | NH3 (88.79 μmol gcat-1 h-1) | [ |
Ti3C2/ZnIn2S4/BiVO4 | Ti3C2 | 0D/2D/three dimension (3D) | photocatalytic overall water splitting | O2 (50.83 μmol g-1 h-1), H2 (102.67 μmol g-1 h-1) | [ |
Ti3C2/SiC | Ti3C2 | 0D/2D | photocatalytic NO pollutant removal | NO pollutant removal efficiency 74.6% | [ |
Ti3C2Tx/Ti3C2Tx/S | Ti3C2Tx | 0D/2D | lithium-sulfur batteries | when sulfur loading is 13.8 mg cm-2, volumetric capacity is 1957 mA h cm-3 and areal capacity is 13.7 mA h cm-2 | [ |
Ti3C2Tx/Ti3C2Tx/RGO | Ti3C2Tx | supercapacitors | volumetric capacity (542 F cm-3) | [ | |
Ti3C2 | Ti3C2 | 0D | multicolor cellular imaging | [ | |
N-Ti3C2 | Ti3C2 | 0D | Fe3+ detection | detectable concentration (2-500 μmol L-1), limit of detection (2 μmol L-1) | [ |
Ti3C2 | Ti3C2 | 0D | immunomodulation | — | [ |
V2C | V2C | 0D | nucleus-target low-temperature photothermal therapy | — | [ |
MoS2 QD@Ti3C2Tx QD@MWCNTs | Ti3C2Tx | electrocatalytic methanol oxidation | maximum methanol oxidation current density at 2.2 V of 160 A g-1 | [ | |
Co-Ti3C2 | Ti3C2 | 0D | photoelectrochemical water oxidation | water oxidation performance (2.99 mA cm-2 at 1.23 V vs. RHE) | [ |
Fig. 13. (a) Energy band positions of Ti3C2 QD/Ni MOF. (b) Scheme of the spatial charge separation and transportation during photocatalytic N2 reduction using Ti3C2 QD/Ni MOF. (c) HRTEM images of Ti3C2 QD/Ni MOF nanosheets. (d) Change in the N-N bond length and free energy against the reaction coordinate during the reaction process. Reprinted with permission from Ref. [15]. Copyright 2020, American Chemical Society.
Fig. 15. Schematic of the evolution of active materials during the discharge process for TC-100/S cathodes. Process 1: more active material accumulation on TCS is beneficial for penetrating electrolytes and transferring electrons and ions in TCD-TCS. Process 2: as lithiation progresses, the outstanding LiPS capture ability of TCD-TCS effectively inhibits the occurrence of the LiPS shuttle effect.
Fig. 16. (a) Preparation schematic of all-solid-state asymmetric fiber supercapacitors. (b) SEM image of the fiber electrode. (c) Galvanostatic charge-discharge curves at 0.25 A cm-3. (d) Specific capacitance at different current densities. Reprinted with permission from Ref. [17]. Copyright 2020, American Chemical Society.
Fig. 17. (a) Schematic of the synthesis of Ti3C2 QDs using a hydrothermal method for bioimaging. (b,c) HRTEM and AFM images of Ti3C2 QDs. (d) Bioimaging image of RAW264.7 cells after Ti3C2 QD uptake. Reprinted with permission from Ref. [29]. Copyright 2017, Wiley-VCH.
|
[1] | 赵彬彬, 钟威, 陈峰, 王苹, 别传彪, 余火根. 高晶化g-C3N4光催化剂: 合成、结构调控和光催化产氢[J]. 催化学报, 2023, 52(9): 127-143. |
[2] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[3] | 蔡铭洁, 刘艳萍, 董珂欣, 陈晓波, 李世杰. 漂浮型Bi2WO6/C3N4/碳布S型异质结光催化材料用于高效净化水体环境[J]. 催化学报, 2023, 52(9): 239-251. |
[4] | 王思恺, 闵祥婷, 乔波涛, 颜宁, 张涛. 单原子催化: 追寻催化领域的“圣杯”[J]. 催化学报, 2023, 52(9): 1-13. |
[5] | 江梓聪, 程蓓, 张留洋, 张振翼, 别传彪. 氧化锌基梯型异质结光催化剂[J]. 催化学报, 2023, 52(9): 32-49. |
[6] | 刘博文, 蔡家杰, 张建军, 谭海燕, 程蓓, 许景三. MOF/CdS梯型光催化剂同时进行苯甲醇氧化和析氢反应及其机理研究[J]. 催化学报, 2023, 51(8): 204-215. |
[7] | 宋明明, 宋相海, 刘鑫, 周伟强, 霍鹏伟. ZnIn2S4/MOF-808微球结构S型异质结光催化剂的制备及其光还原CO2性能研究[J]. 催化学报, 2023, 51(8): 180-192. |
[8] | 邵秀丽, 李可, 李静萍, 程强, 王国宏, 王楷. 揭示NiS@Ta2O5纳米纤维中梯型电荷转移路径及光催化CO2转化性能[J]. 催化学报, 2023, 51(8): 193-203. |
[9] | 李嘉明, 李源, 王小田, 杨直雄, 张高科. TiO2上原子分散的Fe位点促进光催化CO2还原: 增强的催化活性、 DFT计算和机制洞察[J]. 催化学报, 2023, 51(8): 145-156. |
[10] | 阎菲, 张由子, 刘思碧, 邹睿卿, Jahan B Ghasemi, 李炫华. 供体-受体型卟啉基金属有机框架实现有效电荷分离高效光催化析氢[J]. 催化学报, 2023, 51(8): 124-134. |
[11] | 孙利娟, 王伟康, 路平, 刘芹芹, 王乐乐, 唐华. 纳米高熵合金实现光催化剂肖特基势垒的调控用于光催化制氢与苯甲醇氧化耦合反应[J]. 催化学报, 2023, 51(8): 90-100. |
[12] | 刘海峰, 黄祥, 陈加藏. 电子态调控促进氢气无损耗纯化中CO的光致富集和氧化[J]. 催化学报, 2023, 51(8): 49-54. |
[13] | 袁鑫, 范海滨, 刘杰, 覃龙州, 王剑, 段秀, 邱江凯, 郭凯. 连续流技术在光氧化还原催化转化的最新进展[J]. 催化学报, 2023, 50(7): 175-194. |
[14] | 刘德法, 孙彬, 白硕杰, 高婷婷, 周国伟. 双助催化剂Ag/Ti3C2/TiO2分层花状微球用于增强光催化产氢活性[J]. 催化学报, 2023, 50(7): 273-283. |
[15] | 肖汉至, 于博, 颜思顺, 章炜, 李茜茜, 鲍莹, 罗书平, 叶剑衡, 余达刚. 可见光催化二氧化碳参与非活化烯烃1,3-双羧基化反应[J]. 催化学报, 2023, 50(7): 222-228. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||