催化学报 ›› 2022, Vol. 43 ›› Issue (10): 2484-2499.DOI: 10.1016/S1872-2067(22)64102-0

• 综述 • 上一篇    下一篇

MXene量子点(Ti3C2): 性质、合成及其在能源领域的应用

关晨a,b, 岳晓阳a,b, 范佳杰c, 向全军a,b,*()   

  1. a电子科技大学长三角研究院(湖州), 浙江湖州 313001
    b电子科技大学电子科学与工程学院, 电子薄膜与集成器件国家重点实验室, 四川成都 610054
    c郑州大学材料科学与工程学院, 河南郑州 450002
  • 收稿日期:2022-02-28 接受日期:2022-04-04 出版日期:2022-10-18 发布日期:2022-09-30
  • 通讯作者: 向全军
  • 基金资助:
    国家自然科学基金(51672099);国家自然科学基金(52073263);四川科技项目(2021JDTD0026);中央高校基础研究基金(2017-QR-25)

MXene quantum dots of Ti3C2: Properties, synthesis, and energy-related applications

Chen Guana,b, Xiaoyang Yuea,b, Jiajie Fanc, Quanjun Xianga,b,*()   

  1. aYangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, Zhejiang, China
    bState Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
    cSchool of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, Henan, China
  • Received:2022-02-28 Accepted:2022-04-04 Online:2022-10-18 Published:2022-09-30
  • Contact: Quanjun Xiang
  • Supported by:
    National Natural Science Foundation of China(51672099);National Natural Science Foundation of China(52073263);Sichuan Science and Technology Program(2021JDTD0026);Fundamental Research Funds for the Central Universities(2017-QR-25)

摘要:

随着化石燃料的日益枯竭, 能源危机成为社会可持续发展所面临的主要难题和巨大挑战. 因此, 开发一种能够实现高能量转换、具备高储存效率的先进材料显得尤为迫切. MXene量子点, 一种由二维过渡金属(MXene)衍生而来的新兴材料, 因具有丰富的活性边缘原子、较好的导电性和出色的光学特性而成为能源储存与转换领域的研究热点. 一般而言, 当MXene的横向尺寸小于10 nm时, 将这种半导体纳米结构命名为MXene量子点. MXene量子点具有诸多优异的性质, 其不仅保留有二维MXene的固有特性, 同时强大的尺寸效应和量子限制效应还赋予了其更多独特的性能, 例如更强的光吸收能力、更好的导电性及生物相容性等, 从而使得MXene量子点在光催化、检测、储能、生物医学等领域表现出巨大应用潜力.

本文综述了有关MXene量子点在能源相关领域应用的最新研究进展, 包括: (1) MXene量子点在结构、电学和光学方面的基本特性; (2) MXene量子点的制备方法, 如水热/溶剂热法、熔融盐法、声微流体法、直接超声法等, 并给出了各方法的机理、制备步骤(包括具体参数)及优缺点; (3) MXene量子点与二维MXene在不同方面的比较:包括官能团、光吸收能力、能带结构、稳定性以及辅助增强光催化机理等. 重点介绍了MXene量子点在能源储存与转换领域中的应用, 包括光催化(光催化分解水产氢、光催化CO2还原、光催化固氮)、电池和超级电容器, 同时深入探究了MXene量子点在这些应用中发挥的关键作用. 分析了MXene量子点基材料在能源储存与转换领域面临的问题和挑战, 并对未来发展趋势进行了展望, 主要观点包括: (1)目前, MXene量子点的制备主要通过传统的化学法制备, 即用强腐蚀性的酸性溶液(氢氟酸或氢氟酸替代物)刻蚀, 而关于新型物理法或者无氟制备方法的研究较少, 需要进一步拓展; (2) MXene量子点的磁性、化学发光以及透明光学特性等基本性质仍处于理论预测阶段, 需采用更先进仪器设备及实验对其进行更深入的研究; (3)引入新的改性策略如核壳结构、等离子体共振效应, 单原子催化、缺陷调控等来提高MXene量子点基光催化剂的催化性能, 是未来MXene量子点基复合催化剂的发展方向.

关键词: MXene量子点, 能量储存与转换, 合成方法, 光催化, 基本性质

Abstract:

The emerging two-dimensional MXene-derived quantum dots (MQDs) have garnered considerable research interest owing to their abundant active edge atoms, excellent electrical conductivity, and remarkable optical properties. Compared with their two-dimensional (2D) counterpart MXene, MQDs with forceful size and quantum confinement effects exhibit more unparalleled properties and have considerably contributed to the advanced photocatalysis, detection, energy storage, and biomedicine fields. This critical review summarizes the fundamental properties of MQDs in terms of structure, electricity, and optics. The mechanism, characteristics, and comparisons of two typical synthesis strategies (traditional chemical method and novel fluorine-free or chemical-free method) are also presented. Furthermore, the similarities and differences between MQDs and 2D MXenes are introduced in terms of their functional groups, light absorption capacity, energy band structure, and other properties. Moreover, recent advances in the applications of MQD-based materials for energy conversion and storage (ECS) are discussed, including photocatalysis, batteries, and supercapacitors. Finally, current challenges and future opportunities for advancing MQD-based materials in the promising ECS field are presented.

Key words: MXene quantum dots, Energy conversion and storage, Synthesis method, Photocatalysis, Fundamental property