催化学报 ›› 2022, Vol. 43 ›› Issue (10): 2548-2557.DOI: 10.1016/S1872-2067(22)64111-1

• 论文 • 上一篇    下一篇

g-C3N4/CoTiO3梯型异质结及其增强的可见光催化分解纯水制氢性能

孟爱云,, 周双,, 温达, 韩培刚(), 苏耀荣()   

  1. 深圳技术大学新材料与新能源学院, 广东深圳 518118
  • 收稿日期:2022-03-13 接受日期:2022-04-17 出版日期:2022-10-18 发布日期:2022-09-30
  • 通讯作者: 韩培刚,苏耀荣
  • 作者简介:共同第一作者.
  • 基金资助:
    国家自然科学基金(22002091);国家自然科学基金(22178224);深圳技术大学基本科研业务费专项资金;广东省基础与应用基础研究项目(2020A1515110873);广东省晶体生长与应用工程技术研究中心项目(2020GCZX005);上海鸿之微Prop计划;深圳市基础研究面上项目(JCYJ20190813113408912);深圳技术大学高端人才研究经费(2019211);广东省创新专项(2020KTSCX125);深圳市稳定支持项目(SZWD2021015)

g-C3N4/CoTiO3 S-scheme heterojunction for enhanced visible light hydrogen production through photocatalytic pure water splitting

Aiyun Meng,, Shuang Zhou,, Da Wen, Peigang Han(), Yaorong Su()   

  1. College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
  • Received:2022-03-13 Accepted:2022-04-17 Online:2022-10-18 Published:2022-09-30
  • Contact: Peigang Han, Yaorong Su
  • About author:Contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(22002091);National Natural Science Foundation of China(22178224);Fundamental Research Funds for Shenzhen Technology University;Guangdong Basic and Applied Basic Research Foundation(2020A1515110873);University Engineering Research Center of Crystal Growth and Applications of Guangdong Province(2020GCZX005);Prop project of Hongzhiwei Technology (Shanghai) Co., LTD;Shenzhen Fundamental Research Program(JCYJ20190813113408912);Natural Science Foundation of Top Talent of SZTU(2019211);Special Innovative Projects of Guangdong Province(2020KTSCX125);Shenzhen Stable Supporting Program(SZWD2021015)

摘要:

光催化分解纯水制氢在利用太阳能制备清洁能源方面极具潜力, 寻找高效的光催化剂是实现其实际应用的关键因素. 高效的光催化剂需同时具备宽光谱吸收、低载流子复合率以及足够强的氧化还原能力等条件. 然而, 具有强氧化还原能力的光催化剂通常具有较高的导带和较低的价带位置, 导致其带隙较宽, 光吸收范围缩窄, 因此, 单一的光催化剂难以同时满足宽光谱吸收和强氧化还原能力也难以实现高效的光催化纯水分解制氢. 相比之下, 梯型异质结可以将两种带隙适宜、能带结构匹配的光催化剂集成在一起, 在保持原本光催化剂的强氧化还原能力的同时也能充分地利用太阳光, 因此梯型异质结的研究受到广泛关注. 目前报道的梯型异质结光催化剂的可见光催化分解纯水制氢效率仍然很低, 并且大部分的材料都是在全光谱条件下进行测试的, 因此有必要开发在可见光下具有高活性的梯型异质结复合光催化剂.

本文报道了一种具有可见光响应的新型g-C3N4/CoTiO3复合梯型异质结光催化剂, 在不添加牺牲剂的情况下, 成功实现了可见光催化分解纯水制氢气. 光催化测试结果表明, 在可见光(λ > 400 nm)照射下, 当CoTiO3的含量为1.5 wt%时, 复合光催化剂的产氢速率达到最大值(118 μmol∙h‒1∙g‒1). 较好的光催化性能可归因于以下几个方面: (1) g-C3N4纳米片和CoTiO3多面体之间形成梯型异质结, 不仅增强了光生电荷的分离和迁移, 也保留了较强的氧化还原能力; (2) CoTiO3的添加拓展了g-C3N4/CoTiO3异质结在500‒800 nm波长范围内的可见光吸收. 透射电镜和X射线光电子能谱结果表明, g-C3N4纳米片将CoTiO3多面体均匀地包裹在一起, 形成接触紧密的界面, 这为梯型异质结的形成提供了必要条件. 原位XPS结果显示, 在可见光照射下, g-C3N4/CoTiO3异质结中C 1s和N 1s的结合能负移, 而Co 2p和Ti 2p的结合能正移, 表明光生电子从CoTiO3迁移至C3N4. 电子自旋共振结果表明, 相比纯g-C3N4和CoTiO3, g-C3N4/CoTiO3异质结在光照条件下能产生更多的羟基自由基和超氧自由基, 表明具有较强氧化能力的CoTiO3价带空穴和具有较强还原能力的g-C3N4导带电子被保留下来, 进一步验证了g-C3N4/CoTiO3的梯型异质结电荷传输机制. 综上, 本文通过系统地研究g-C3N4/CoTiO3梯型异质结的制备、光催化纯水分解制氢性能以及电荷传输机理, 为构建具有可见光响应的高效光催化纯水分解制氢光催化剂提供了借鉴.

关键词: g-C3N4, CoTiO3, 梯型异质结, 光催化, 产氢, 纯水分解

Abstract:

Photocatalytic hydrogen (H2) production via water splitting in the absence of sacrificial agents is a promising strategy for producing clean and sustainable hydrogen energy from solar energy. However, the realization of a photocatalytic pure water splitting system with desirable efficiency is still a huge challenge. Herein, visible light photocatalytic H2 production from pure water splitting was successfully achieved using a g-C3N4/CoTiO3 S-scheme heterojunction photocatalyst in the absence of sacrificial agents. An optimum hydrogen evolution rate of 118 μmol∙h-1∙g-1 was reached with the addition of 1.5 wt% CoTiO3. The remarkably promoted hydrogen evolution rate was attributed to the intensified light absorption coupled with the synergistic effect of visible light responsive CoTiO3, the promoted efficiency in charge separation, and the reserved strong redox capacity induced by the S-scheme charge transfer mechanism. This work provides an alternative to visible light-responding oxidation photocatalysts for the construction of S-scheme heterojunctions and high-efficiency photocatalytic systems for pure water splitting.

Key words: CoTiO3, g-C3N4, Photocatalytic hydrogen evolution, Pure water splitting, S-scheme heterojunction