催化学报 ›› 2022, Vol. 43 ›› Issue (10): 2530-2538.DOI: 10.1016/S1872-2067(22)64108-1

• 论文 • 上一篇    下一篇

CdS/Pt异质结光催化剂光解水的电子转移动力学

张建军a, 杨高元b, 何博文c, 程蓓c, 李佑稷d, 梁桂杰b,#(), 王临曦a,*()   

  1. a中国地质大学(武汉)材料与化学学院太阳燃料实验室, 湖北武汉 430074
    b湖北文理学院低维光电材料与器件湖北省重点实验室, 湖北襄阳 441053
    c武汉理工大学材料复合新技术国家重点实验室, 湖北武汉 430070
    d吉首大学化学化工学院, 湖南吉首 416000
  • 收稿日期:2022-04-04 接受日期:2022-04-16 出版日期:2022-10-18 发布日期:2022-09-30
  • 通讯作者: 梁桂杰,王临曦
  • 基金资助:
    国家重点研发计划(2018YFB1502001);国家自然科学基金(51961135303);国家自然科学基金(51932007);国家自然科学基金(U1905215);国家自然科学基金(21871217);国家自然科学基金(52073223);中国博士后科学基金(2021TQ0310);中国博士后科学基金(2021TQ0311);中国博士后科学基金(2021M702990)

Electron transfer kinetics in CdS/Pt heterojunction photocatalyst during water splitting

Jianjun Zhanga, Gaoyuan Yangb, Bowen Hec, Bei Chengc, Youji Lid, Guijie Liangb,#(), Linxi Wanga,*()   

  1. aLaboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, Hubei, China
    bHubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China
    cState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China
    dCollege of chemistry and Chemical engineering, Jishou University, Jishou 416000, Hunan, China
  • Received:2022-04-04 Accepted:2022-04-16 Online:2022-10-18 Published:2022-09-30
  • Contact: Guijie Liang, Linxi Wang
  • Supported by:
    National Key Research and Development Program of China(2018YFB1502001);National Natural Science Foundation of China(51961135303);National Natural Science Foundation of China(51932007);National Natural Science Foundation of China(U1905215);National Natural Science Foundation of China(21871217);National Natural Science Foundation of China(52073223);China Postdoctoral Science Foundation(2021TQ0310);China Postdoctoral Science Foundation(2021TQ0311);China Postdoctoral Science Foundation(2021M702990)

摘要:

为缓解能源危机和环境污染, 开发和利用高热值和零污染的氢气至关重要. 近年来, 半导体光催化分解水制氢技术在科研领域受到广泛关注. CdS是一种常用的光解水催化剂, 但单一CdS光催化剂的光生电子和空穴易复合, 并且该复合过程发生在皮秒到纳秒级. 大部分光生电子无法迁移到光催化剂表面参与析氢反应, 导致其产氢效率低. 贵金属助催化剂在提高CdS光催化分解水性能方面展现出巨大的潜力, 然而贵金属修饰的CdS在实际析氢过程中的电子动力学机制尚不清楚. 此外, 光生载流子转移过程一般发生在飞秒和皮秒尺度, 很难通过普通的光学表征来探测这一动力学过程. 因此, 深入研究光生载流子的转移动力学过程对揭示CdS基复合光催化材料析氢性能增强的动力学机制具有重要意义.

本文利用Pt纳米颗粒修饰的CdS纳米棒来研究CdS/Pt异质结中的超快电子转移动力学过程. 首先通过水热法合成CdS纳米棒, 再利用原位光还原的方法将Pt纳米颗粒沉积到CdS纳米棒表面. 在合成CdS/Pt过程中, PtCl62-通过库仑作用吸附到CdS纳米棒表面带正电的缺陷位点, 并利用CdS纳米棒产生的光生电子将PtCl62-还原成Pt纳米颗粒, 从而得到CdS/Pt肖特基异质结光催化剂. 借助飞秒瞬态吸收光谱技术探究CdS和CdS/Pt在乙腈和纯水中的电子转移动力学过程. 对于单一组分的CdS, 主要有三种激子猝灭途径, 包括电子的浅缺陷态俘获(~6.8 ps)、电子和被俘获的空穴的复合(~58.2 ps), 以及导带底电子和价带顶空穴的荧光辐射复合(~2611.9 ps). 原位沉积的Pt纳米颗粒可钝化CdS表面的缺陷, 并且光生电子的浅缺陷态俘获过程得到显著的抑制. 此外, Pt助催化剂的引入在CdS/Pt界面构建了超快电子传输通道. 对于分散在乙腈中的CdS/Pt, 界面电子转移的时间和速率为~5.5 ps和~3.5×1010 s-1. 在模拟光解水过程中, CdS/Pt界面的电子转移时间减少到~5.1 ps, 并且其电子转移速率增大到~4.9×1010 s-1, 证实了Pt纳米颗粒是光催化产氢反应的活性位点. 综上, 本文从电子动力学角度揭示了Pt助催化剂提高CdS光解水性能的机理, 为设计新型高效的CdS基光催化剂提供了指导和新思路.

关键词: 飞秒瞬态吸收光谱, 光催化分解水, CdS, 电子转移动力学, 俘获态

Abstract:

Noble metal cocatalysts have shown great potential in boosting the performance of CdS in photocatalytic water splitting. However, the mechanism and kinetics of electron transfer in noble-metal-decorated CdS during practical hydrogen evolution is not clearly elucidated. Herein, Pt-nanoparticle-decorated CdS nanorods (CdS/Pt) are utilized as the model system to analyze the electron transfer kinetics in CdS/Pt heterojunction. Through femtosecond transient absorption spectroscopy, three dominating exciton quenching pathways are observed and assigned to the trapping of photogenerated electrons at shallow states, recombination of free electrons and trapped holes, and radiative recombination of locally photogenerated electron-hole pairs. The introduction of Pt cocatalyst can release the electrons trapped at the shallow states and construct an ultrafast electron transfer tunnel at the CdS/Pt interface. When CdS/Pt is dispersed in acetonitrile, the lifetime and rate for interfacial electron transfer are respectively calculated to be ~5.5 ps and ~3.5 × 1010 s-1. The CdS/Pt is again dispersed in water to simulate photocatalytic water splitting. The lifetime of the interfacial electron transfer decreases to ~5.1 ps and the electron transfer rate increases to ~4.9 × 1010 s-1, confirming that Pt nanoparticles serve as the main active sites of hydrogen evolution. This work reveals the role of Pt cocatalysts in enhancing the photocatalytic performance of CdS from the perspective of electron transfer kinetics.

Key words: Femtosecond transient absorption spectroscopy, Photocatalytic water splitting, CdS, Electron transfer kinetics, Trap state