催化学报 ›› 2022, Vol. 43 ›› Issue (10): 2453-2483.DOI: 10.1016/S1872-2067(22)64104-4

• 综述 •    下一篇

非均相氮配位单原子光催化剂和电催化剂

沈荣晨a, 郝磊a, 吴永豪b,c,#(), 张鹏d, Arramel Arramele,f, 李佑稷g, 李鑫a,*()   

  1. a华南农业大学生物质工程研究院, 农业部能源植物资源与利用重点实验室, 广东广州 511443, 中国
    b香港城市大学能源与环境学院, 香港, 中国
    c香港城市大学深圳研究院, 广东深圳 518057, 中国
    d郑州大学材料与工程学院, 低碳环保材料智能设计国际联合研究中心, 河南郑州 450001, 中国
    e新加坡国立大学物理系, 新加坡
    fNano Center Indonesia, Jl. PUSPIPTEK South Tangerang, 印度尼西亚
    g吉首大学化学化工学院, 湖南吉首 416000, 中国
  • 收稿日期:2022-01-26 接受日期:2022-02-09 出版日期:2022-10-18 发布日期:2022-09-30
  • 通讯作者: 吴永豪,李鑫
  • 基金资助:
    国家自然科学基金(21975084);国家自然科学基金(51672089);国家自然科学基金(51972287);国家自然科学基金(U2004172);国家自然科学基金(51502269);广东省自然科学基金(2021A1515010075);深圳市科技创新委员会自然科学基金(JCYJ20190808181805621);香港研究资助局(RGC)(GRF 11305419)

Heterogeneous N-coordinated single-atom photocatalysts and electrocatalysts

Rongchen Shena, Lei Haoa, Yun Hau Ngb,c,#(), Peng Zhangd, Arramel Arramele,f, Youji Lig, Xin Lia,*()   

  1. aInstitute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization Ministry of Agriculture, South China Agricultural University, Guangzhou 511443, Guangdong, China
    bSchool of Energy and Environment, City University of Hong Kong, Hong Kong, China
    cShenzhen Research Institute, City University of Hong Kong, Shenzhen Hi-Tech Industrial Park, Shenzhen 518057, Guangdong, China
    dState Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
    eDepartment of Physics, National University of Singapore, Singapore 117551, Singapore
    fNano Center Indonesia, Jl. PUSPIPTEK South Tangerang, Banten 15314, Indonesia
    gCollege of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, Hunan, China
  • Received:2022-01-26 Accepted:2022-02-09 Online:2022-10-18 Published:2022-09-30
  • Contact: Yun Hau Ng, Xin Li
  • About author:Yun Hau Ng is an associate professor in the School of Energy and Environment, City University of Hong Kong. He received his PhD from Osaka University in 2009. Before joining City University of Hong Kong, he was a lecturer (2014) and senior lecturer (2016) in the School of Chemical Engineering, University of New South Wales. His research is focused on the development of novel photoactive semiconductors for sunlight energy conversion. He received the 2021 Kataoka Lectureship Award for Asian and Oceanian Photochemist, the APEC ASPIRE Prize in 2019, Distinguished Lectureship Award from the Chemical Society of Japan in 2018, and Honda-Fujishima Prize by the Electrochemical Society of Japan in 2013.
    Xin Li received his B.S. and PhD degrees in Chemical Engineering from Zhengzhou University in 2002 and South China University of Technology in 2007, respectively. Then, he joined South China Agricultural University as a faculty staff member, and became a professor in 2017. During 2012 and 2019, he worked as a visiting scholar at the Electrochemistry Center, the University of Texas at Austin, and Department of Chemistry, the University of Utah, respectively. His research interests include photocatalysis, photoelectrochemistry, adsorption, biomass engineering and the related materials and devices development (see http://www.researcherid.com/rid/A-2698-2011).
  • Supported by:
    National Natural Science Foundation of China(21975084);National Natural Science Foundation of China(51672089);National Natural Science Foundation of China(51972287);National Natural Science Foundation of China(U2004172);National Natural Science Foundation of China(51502269);Natural Science Foundation of Guangdong Province(2021A1515010075);General Program of Science and Technology Innovation Committee of Shenzhen Municipality(JCYJ20190808181805621);Hong Kong Research Grant Council (RGC) General Research Fund(GRF 11305419)

摘要:

随着能源危机和环境问题的日益突出, 人们对可再生能源的开发和利用越来越关注. 其中, 通过能源转换技术, 如光催化、电催化或光(电)催化析氢反应、析氧反应、固氮反应和二氧化碳还原反应等, 将清洁、丰富的太阳能和电能转化为化学能是解决能源和环境问题的有效策略之一. 能源转换技术实现实际应用的关键在于催化剂的活性、稳定性、选择性和成本等, 然而目前催化反应大多采用生产成本高的贵金属基催化剂. 因此, 亟需开发高效、低成本的非贵金属基催化剂来替代贵金属催化剂.

单原子催化剂由于可最大限度地利用结构可控、位置明确的金属活性位点, 在多相催化中得到了广泛应用. 近年来人们发现, 通过单个金属原子与氮配位构建的氮配位单原子催化剂表现出有趣的物理、光学和电子性质, 其在光催化和电催化领域的应用研究发展迅速. 尽管已经有了大量的相关文献报道, 但目前有关氮配位单原子催化剂活性位点的内在光催化和电催化性能的调节原理和催化机理的研究尚不充分.

本文综述了近年氮配位的单原子催化剂的合成方法和检测技术, 总结了氮配位的单原子催化剂在光催化和电催化领域(如光催化或电催化水裂解、二氧化碳还原及固氮等)的应用, 结合高角度环形暗场扫描透射电子显微镜、原位红外光谱、原位X射线吸收近边结构谱、第一性原理计算结果以及催化剂在光电催化转化反应中的性能, 从单原子配位本征电子结构、活性位点及载体作用等角度, 详细讨论了氮配位单原子催化剂真实活性位及作用机制, 深度分析了氮原子配位的单原子催化的反应路径与机理, 阐明表面活性位点的微观结构特性, 进而为开发新型高效单原子光催化剂提供更多的科学依据. 最后, 总结了目前氮配位单原子光及电催化剂研究面临的机遇与挑战, 并对未来发展进行了展望. 深度理解催化剂的构效关系, 提高金属单原子活性位点含量及本征活性, 对催化剂活性中心局域原子和电子结构进行精准设计与构建, 将有助于单原子催化剂走出实验室, 进而实现实际应用.

关键词: 氮配位单原子催化剂, 光催化, 电催化, 电子结构, 活性位点

Abstract:

Single-atom catalysts (SACs) have been widely used in heterogeneous catalysis owing to the maximum utilization of metal-active sites with controlled structures and well-defined locations. Upon tailored coordination with nitrogen atom, the metal-nitrogen (M-N)-based SACs have demonstrated interesting physical, optical and electronic properties and have become intense in photocatalysis and electrocatalysis in the past decade. Despite substantial efforts in constructing various M-N-based SACs, the principles for modulating the intrinsic photocatalytic and electrocatalytic performance of their active sites and catalytic mechanism have not been sufficiently studied. Herein, the present review intends to shed some light on recent research made in studying the correlation between intrinsic electronic structure, catalytic mechanism, single-metal atom (SMA) confinement and their photocatalytic and electrocatalytic activities (conversion, selectivity, stability and etc). Based on the analysis of fundamentals of M-N-based SACs, theoretical calculations and experimental investigations, including synthetic methods and characterization techniques, are both included to provide an integral understanding of the underlying mechanisms behind improved coordination structure and observed activity. Finally, the challenges and perspectives for constructing highly active M-N based photocatalysis and electrocatalysis SACs are provided. In particular, extensive technical and mechanism aspects are thoroughly discussed, summarized and analyzed for promoting further advancement of M-N-based SACs in photocatalysis and electrocatalysis.

Key words: N-coordinated single-atom catalyst, Photocatalysis, Electrocatalysis, Electronic structure, Active site