催化学报 ›› 2022, Vol. 43 ›› Issue (10): 2615-2624.DOI: 10.1016/S1872-2067(22)64134-2

• 论文 • 上一篇    下一篇

ZnIn2S4纳米片与WO3纳米棒构建3D结构的S型异质结用于可见光光催化分解水产氢

赵梦雨a, 刘森a, 陈代梅a,*(), 张苏舒b, Sónia A. C. Carabineiroc, 吕康乐b,#()   

  1. a中国地质大学材料科学与技术学院, 矿物材料国家重点实验室, 非金属矿物与固废资源化利用北京市重点实验室, 北京 100083, 中国
    b中南民族大学资源与环境学院, 资源转化与污染控制国家民委重点实验室, 湖北武汉 430074, 中国
    c新里斯本大学科学与技术学院, 卡帕里卡, 葡萄牙
  • 收稿日期:2022-03-22 接受日期:2022-04-29 出版日期:2022-10-18 发布日期:2022-09-30
  • 通讯作者: 陈代梅,吕康乐
  • 基金资助:
    国家自然科学基金(21978276);国家自然科学基金(51672312);中央高校基础研究经费(2652019157);中央高校基础研究经费(2652019158);中央高校基础研究经费(2652019159);北京市教育委员会重点科技项目基金(KZ201910853043);葡萄牙科技基金/科学与大学教育部基金项目(绿色化学联合实验室)(CEECINST/00102/2018);葡萄牙科技基金/科学与大学教育部基金项目(绿色化学联合实验室)(UIDB/50006/2020);葡萄牙科技基金/科学与大学教育部基金项目(绿色化学联合实验室)(UIDP/50006/2020)

A novel S-scheme 3D ZnIn2S4/WO3 heterostructure for improved hydrogen production under visible light irradiation

Mengyu Zhaoa, Sen Liua, Daimei Chena,*(), Sushu Zhangb, Sónia A. C. Carabineiroc, Kangle Lvb,#()   

  1. aBeijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
    bKey Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, 430074, China
    cDepartment of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
  • Received:2022-03-22 Accepted:2022-04-29 Online:2022-10-18 Published:2022-09-30
  • Contact: Daimei Chen, Kangle Lv
  • Supported by:
    National Natural Science Foundation of China(21978276);National Natural Science Foundation of China(51672312);Fundamental Research Funds for the Central Universities(2652019157);Fundamental Research Funds for the Central Universities(2652019158);Fundamental Research Funds for the Central Universities(2652019159);Beijing Municipal Education Commission Key Science and Technology Project Fund(KZ201910853043);Portuguese Foundation for Science and Technology/Science and University Teaching(CEECINST/00102/2018);Portuguese Foundation for Science and Technology/Science and University Teaching(UIDB/50006/2020);Portuguese Foundation for Science and Technology/Science and University Teaching(UIDP/50006/2020)

摘要:

氢气是一种清洁能源, 利用太阳能进行光催化分解水产氢, 因为节能和环保, 吸引了国内外学者的广泛关注. 但是, 半导体光催化材料普遍存在可见光吸收范围窄和光生载流子易复合等问题, 导致光催化效率不高. 半导体耦合是拓展光吸收范围, 并促进光生载流子空间分离的有效策略之一. 能带相互交错的两种半导体复合, 可以形成传统的II型异质结, 但是这种耦合方式削弱了光生电荷的氧化还原能力. 相对传统II型异质结光催化材料的不足, 余家国教授提出了S型异质结的概念, 它通常由两种n型半导体光催化剂组成, 其中能带位置较高的为还原型光催化剂(RP), 能带位置较低的是氧化型光催化剂(OP). 形成S型异质结的关键是接触界面处存在由RP指向OP的内电场. 受内建电场的驱动, S型异质结界面电子和空穴的流向与传统II型光催化剂完全不同. 由于保留了光生电子和空穴具有较强的还原和氧化能力, S型异质结在热力学上更有利于光催化氧化与还原反应.

本文以硫代乙酰胺为硫源, 采用低温溶剂热法(乙二醇中110 °C反应2 h), 在氧化型光催化剂(1D的WO3纳米棒)表面原位生长还原型光催化剂(2D的ZnIn2S4纳米片), 从而构建具有3D结构的S型异质结, 并进行可见光催化分解水产氢性能研究. ZnIn2S4在WO3纳米棒表面的原位生长, 有利于复合半导体界面的电荷传输, 同时增加光催化反应的活性位点. 而且具有3D结构的光催化材料, 有利于光散射而增强光吸收, 增强光催化活性. 研究结果表明, 优化的ZnIn2S4/WO3复合光催化材料(ZIS-2.5/W)可见光(λ > 400 nm)分解水产氢速率高达300 μmol·g-1·h-1, 分别是单一组分WO3和ZnIn2S4分解水产氢速率的417和2倍. 复合催化剂在400 nm处分解水产氢的光量子效率为2.81%.

通过原位X射线光电子能谱和(开尔文探针)功函测定, 并结合贵金属的光化学表面沉积实验, 推测出光生电子在ZnIn2S4和WO3复合界面处的S型传输机制, 该S型异质结不仅促进了载流子分离, 而且保留了复合催化剂强的氧化与还原性能, 因而显著提高可见光光催化分解水产氢性能.

关键词: WO3, ZnIn2S4, 光催化, S型, 析氢

Abstract:

In-plane epitaxial growth of ZnIn2S4 nanosheets on the surface of hexagonal phase WO3 nanorods was achieved by a facile solvothermal method. The unique 3D heterostructure not only enlarged the specific surface area, but also red-shifted the absorption edge from 381 to 476 nm to improve the light harvesting ability, which largely enhanced the photocatalytic hydrogen evolution. The H2 production rate of the best performing ZnIn2S4/WO3 photocatalyst (ZIS-2.5/W, the material with a molar rate of ZnIn2S4 (ZIS) to WO3 (W) of 2.5) was 300 μmol·g-1·h-1, around 417 times and 2 times higher than the rates of pristine WO3 and ZnIn2S4, respectively. The apparent quantum efficiency for ZIS-2.5/W composite was up to 2.81% at 400 nm. Based on the difference in Fermi levels between WO3 and ZnIn2S4, and the distribution of the redox active sites on WO3/ZnIn2S4 heterostructure, a S-scheme electron transfer mechanism was proposed to illustrate the improved photocatalytic activity of WO3/ZnIn2S4 heterojunction, which not only stimulated the spatial separation of the photogenerated charge carriers, but also maintained the strong reduction/oxidation ability of the photocatalyst.

Key words: WO3, ZnIn2S4, Photocatalysis, S-Scheme, Hydrogen evolution