催化学报 ›› 2023, Vol. 46: 11-27.DOI: 10.1016/S1872-2067(22)64194-9

• 论文 • 上一篇    下一篇

氢转移反应对分子筛催化甲醇和二甲醚动态自催化反应历程的贡献: 深入理解甲醛的生成机理和作用机制

林杉帆a,c, 郅玉春a, 张文娜a, 袁小帅d, 张成伟a,c, 叶茂a, 徐舒涛a, 魏迎旭a,*(), 刘中民a,b,c,*()   

  1. a中国科学院大连化学物理研究所, 低碳催化技术国家工程研究中心, 洁净能源国家实验室, 能源材料化学协同创新中心, 辽宁大连 116023
    b中国科学院大连化学物理研究所, 催化基础国家重点实验室, 辽宁大连 116023
    c中国科学院大学, 北京 100049
    d中国科学院大连化学物理研究所, 能源战略研究中心, 辽宁大连 116023
  • 收稿日期:2022-09-26 接受日期:2022-11-10 出版日期:2023-03-18 发布日期:2023-02-21
  • 通讯作者: *电子信箱: liuzm@dicp.ac.cn (刘中民),weiyx@dicp.ac.cn (魏迎旭)
  • 基金资助:
    国家自然科学基金(21991092);国家自然科学基金(21991090);国家自然科学基金(22072148);国家自然科学基金(21703239);国家自然科学基金(22002157);大连化物所创新研究基金(DICP I202121);辽宁省自然科学基金(2022-MS-029);中国科学院前沿科学重点研究计划(QYZDY-SSW-SC024)

Hydrogen transfer reaction contributes to the dynamic evolution of zeolite-catalyzed methanol and dimethyl ether conversions: Insight into formaldehyde

Shanfan Lina,c, Yuchun Zhia, Wenna Zhanga, Xiaoshuai Yuand, Chengwei Zhanga,c, Mao Yea, Shutao Xua, Yingxu Weia,*(), Zhongmin Liua,b,c,*()   

  1. aNational Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
    bState Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
    cUniversity of Chinese Academy of Sciences, Beijing 100049, China
    dResearch Center for Energy Strategy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
  • Received:2022-09-26 Accepted:2022-11-10 Online:2023-03-18 Published:2023-02-21
  • Contact: *E-mail: liuzm@dicp.ac.cn (Z. Liu), weiyx@dicp.ac.cn (Y. Wei)
  • About author:Yingxu Wei received her PhD in Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS) in 2001. During her service at the Applied Catalysis Laboratory of DICP since graduation, she conducted the postdoctoral study at University of Namur (Belgium) from 2003 to 2004. She has been the group leader of Catalysis and New Catalytic Reactions in National Engineering Laboratory of Methanol to Olefins since 2009 and was promoted to professor in 2011. Over the years, Prof. Wei has undertaken a number of key academic research projects commissioned by NSFC, CAS, MOST, PetroChina and other organizations. She has been involved in the researches on heterogeneous catalysis, methanol to olefins, catalysts and processes of hydrocarbon conversion, and catalytic conversion of methanol and methane derivatives. Over 110 academic papers authored by Prof. Wei have been published in scientific journals home and abroad and more than 60 patents have been applied and granted. She gained the national special support plan for high level talents. She is on the editorial board of the Chinese Journal of Catalysis and works as the editor of Microporous and Mesoporous Materials.
    Prof. Zhongmin Liu is the Director of Dalian Institute of Chemical Physics (DICP) and Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (CAS); Director of National Engineering Laboratory for Methanol to Olefins and National Energy Low-carbon Catalysis and Engineering R&D Center.
    Prof. Liu has long been working with the catalysis research, process development, and technology transfer in energy conversion and utilization, and made significant achievements. In 2006, as a leading scientist, Professor Liu, together with partners and his colleagues, finished the first industrial demonstration test of methanol to olefin process, named as DMTO. Based on DMTO technology the world’s first commercial unit of MTO process was constructed and started to operate by Shenhua group in 2010, which was an important progress for coal to chemicals, and provides a new chance for the substitution of oil by coal. So far, DMTO technology has been licensed to 31 units with a total olefins production capacity of 20.25 Mt/a. And 16 commercial DMTO units have been put into stream with olefins production capacity of 9.30 Mt/a. This breakthrough leads coal to olefins to a new industrial sector in China, greatly changes Chinese light olefins supply, and impacts the light olefins market worldwide. Professor Liu also developed coal-based ethanol production technology, via carbonylation of dimethylether and further hydrogenation, and finished its commercialization by construction of a world’s first plant (100KTA) in 2017, which demonstrates a new way for the clean utilization of coal. Up to now, eight DMTE units have been licensed with the ethanol production capacity of 2.25 Mt/a. As DMTE technology can turn the relatively abundant coal resources not food into ethanol, it can safeguard China’s food supply while reduce air pollution.
    Prof. Liu has published more than 430 research papers and got 600 authorized patents or more. He also received many awards in his scientific career, including The First Class of the National Technological Invention Awards (2014), The First Class of the National Scientific and Technological Progress Award (2017), Chinese Catalytic Achievement Award (2017), AIChE Professional Achievement Award for Innovations in Green Process Engineering (2018), Highest Science and Technology Awards of Liaoning Province (2019), etc.
  • Supported by:
    National Natural Science Foundation of China(21991092);National Natural Science Foundation of China(21991090);National Natural Science Foundation of China(22072148);National Natural Science Foundation of China(21703239);National Natural Science Foundation of China(22002157);The Innovation Research Foundation of Dalian Institute of Chemical Physics(DICP I202121);The National Natural Science Foundation of Liaoning Province(2022-MS-029);The Key Research Program of Frontier Sciences, Chinese Academy of Sciences(QYZDY-SSW-SC024)

摘要:

甲醇制烯烃(MTO)已成为从非石油资源获取低碳烯烃的最为成功的工业化路线, 受到学术界和工业界的广泛关注.  MTO反应是一个动态的自催化过程, 其中烯烃、甲基环戊烯和芳烃物种作为(自)催化剂.  氢转移(HT)反应是构建MTO自催化剂和烷烃副产物的主要途径, 对于深入理解MTO反应的动态特性及其复杂反应网络至关重要.  作为反应物甲醇/二甲醚发生HT反应的产物, 甲醛对MTO反应中自催化的引发和失活具有重要作用.  然而, 由于甲醛的反应活性高、浓度低且对色谱FID检测器的灵敏度低, 因此甲醛难以像其它烃类产物一样通过常规手段进行在线定量监测, 迄今甲醛在整个反应过程中的演变规律仍不清楚, 这阻碍了对反应物诱导的HT反应以及整个反应网络的全面认识.  

本文借助实验及理论计算研究了SAPO-34分子筛上甲醇和二甲醚转化过程中的HT反应, 尤其是生成甲醛的反应物诱导的HT反应.  首先, 建立了一种定量检测甲醛的实验方法, 实现在真实反应条件下, 原位定量监测整个MTO和二甲醚制烯烃(DTO)过程中甲醛浓度的变化.  在此基础上, 将甲醛浓度变化规律与其它反应规律关联起来, 更为详细地追踪整个反应过程中H原子的轨迹, 并进一步结合DFT计算、operando光谱分析、12C/13C同位素切换、失活动力学分析, 研究了MTO/DTO不同反应阶段中甲醛的生成机理, 揭示了甲醇和二甲醚的甲基化活性和氢转移活性, 及其对反应网络和积碳失活的影响, 从而确定了MTO和DTO反应的失活机理和模型.  结合甲醛的定量检测, 还研究了共进料H2O和高压H2对MTO/DTO反应的影响.  综合上述信息, 提出减缓催化剂积碳失活的策略, 并加以实践应用.  

反应物诱导的HT反应在反应物未能完全转化的初始阶段和失活阶段尤为突出, 两个阶段检测到少量和大量的甲醛, 分别主要由分子筛催化的甲醇/二甲醚与甲氧基和烯烃之间的HT反应产生; 而产物诱导的HT反应在高效反应阶段占主导地位.  这种动态演变的HT反应作为“暗线”与作为“明线”的烯烃生成的主反应同时发生并相互作用, 共同构成MTO和DTO完整的动态反应网络.  HT反应不仅能够生成作为自催化剂的不饱和活性中间体, 而且能够生成积碳并导致失活, 对MTO自催化网络从启动到衰退的动态演变起到关键作用.  

DTO反应中, 由于二甲醚的HT反应能力较弱, 参与HT反应的能垒较高, 因此, 反应物诱导的HT反应受到抑制, 相应的甲醛、烷烃以及缺氢物种的生成相对受到抑制, 这使得DTO反应中烯烃循环相对突出, 并表现出相对温和的反应历程和缓慢的失活过程.  相比之下, 甲醇具有很强的HT能力: 一方面作为氢受体生成甲烷和缺氢物种, 直接参与并促进积碳失活的发生;另一发面, 作为氢供体生成甲醛, 引发甲醛介导的失活过程, 间接参与并促进积碳生成.  同时, 甲醇较强的HT能力加剧了甲醇甲基化反应与HT反应之间的竞争, 使得反应物诱导的HT和失活过程在MTO反应中至关重要.  共进料H2O和高压H2的MTO/DTO反应中仍然能够检测到甲醛, 且含量略小于或者等于非共进料体系.  

特别指出,HT能力较弱和传质受限引起局部催化微环境中反应物的化学势较低是二甲醚反应的两大特点.  共进料高压H2对MTO反应的影响包括不饱和烃类物种的加氢、加氢消碳和抑制HT反应的发生.  利用上述两点对反应机理的理解, 采用二甲醚(而不是甲醇)与高压H2共进料, 可进一步使得反应过程中的HT反应受到抑制, 进而调节动态反应网络以更温和的自催化演变方式发生, 实现反应高效且长周期的运行, 该反应过程具有实际工业应用潜力.  

综上, 本工作的研究和实践尝试对于高效的工艺和催化剂的开发和应用, 并以此实现对动态复杂反应网络的精准调控具有重要意义. 

关键词: 甲醇制烯烃, 二甲醚, 氢转移, 甲醛, 失活

Abstract:

Formaldehyde (HCHO), generating from hydrogen transfer (HT) of reactant, is significant for autocatalysis initiation and deactivation in methanol-to-olefins (MTO), but hitherto, its evolution throughout the reaction has not been thoroughly revealed. Herein, by the established colorimetric analysis method, HCHO in the MTO and dimethyl ether (DME)-to-olefins (DTO) reactions over SAPO-34 was in situ quantitatively monitored, where HCHO was detected in slight and conspicuous amounts at initial and deactivation stages with semi-conversion, also when co-fed with water or high-pressure H2. We reveal the weak HT ability of DME relative to methanol, which enables prominent olefins-based cycle and suppresses reactant-induced HT and deactivation in DTO (which is critical for MTO). A complete dynamic reaction network is disclosed, constituting two simultaneous and interplaying pathways: the main reactions for olefin generation as the open-line and HT reactions as the hidden-line. Especially, co-feeding high-pressure H2 with DME capacitating a long-term and highly efficient operation of DTO by modulating the dynamic reaction network to a more moderate autocatalysis evolution, has great potential in industry application.

Key words: Methanol-to-Olefins, Dimethyl ether, Hydrogen transfer, Formaldehyde, Deactivation