催化学报 ›› 2023, Vol. 46: 28-35.DOI: 10.1016/S1872-2067(22)64205-0

• 论文 • 上一篇    下一篇

氮化碳启发的共价有机框架光催化剂用于高效过氧化氢光合成

邵潮晨a,b, 何晴a,b, 张默淳a,b, 贾麟a,b, 纪玉金a,b, 胡永攀a,b, 李有勇a,b, 黄伟a,b,*(), 李彦光a,b,*()   

  1. a苏州大学功能纳米与软物质研究院, 江苏苏州 215123
    b江苏省先进负碳技术重点实验室, 江苏苏州 215123
  • 收稿日期:2022-10-05 接受日期:2022-12-05 出版日期:2023-03-18 发布日期:2023-02-21
  • 通讯作者: *电子信箱: yanguang@suda.edu.cn (李彦光),weihuang@suda.edu.cn (黄伟)
  • 作者简介:

    1共同第一作者

  • 基金资助:
    国家自然科学基金(22002100);国家自然科学基金(U2002213);江苏省自然科学基金(BK20220027);碳基功能材料和器件联合国际研究实验室

A covalent organic framework inspired by C3N4 for photosynthesis of hydrogen peroxide with high quantum efficiency

Chaochen Shaoa,b, Qing Hea,b, Mochun Zhanga,b, Lin Jiaa,b, Yujin Jia,b, Yongpan Hua,b, Youyong Lia,b, Wei Huanga,b,*(), Yanguang Lia,b,*()   

  1. aInstitute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
    bJiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
  • Received:2022-10-05 Accepted:2022-12-05 Online:2023-03-18 Published:2023-02-21
  • Contact: *E-mail: yanguang@suda.edu.cn (Y. Li), weihuang@suda.edu.cn (W. Huang)
  • About author:

    1Contributed equally to this work.

  • Supported by:
    National Natural Science Foundation of China(22002100);National Natural Science Foundation of China(U2002213);The Natural Science Foundation of Jiangsu Province(BK20220027);Collaborative Innovation Center of Suzhou Nano Science and Technology, the 111 Project and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices

摘要:

过氧化氢(H2O2)是一种绿色高效氧化剂, 广泛应用于医药、食品和造纸等领域.  传统制备方法为蒽醌氧化法, 但该法不仅耗能高, 工艺复杂, 而且会产生大量废水、废气和固体废物.  探索绿色温和条件下新的H2O2合成方法成为当前研究热点.  其中, 以太阳能为驱动力的光催化H2O2合成策略广受关注.  在光催化反应过程中, 半导体光催化剂扮演着至关重要的角色, 它们捕获光能、产生光生电荷并引发界面的氧化还原反应.  因此, 开发高效半导体催化剂是实现高效光催化H2O2合成的关键.  氮化碳(C3N4)是目前应用最为广泛的H2O2光合成催化剂.  研究表明, C3N4中的庚嗪基团能够和活性氧中间体形稳定加成产物, 有利于H2O2的选择性生成.  然而, 由于C3N4可见光吸收范围窄及光生电荷复合快等问题, 导致光催化效率较低, 严重限制了其光合成H2O2的实际应用.  基于对C3N4本征优势和固有缺陷的了解, 本文提出将C3N4的庚嗪构筑单元整合到具有宽光谱吸收的共价有机框架(COFs)骨架中, 以优化材料的电荷分离动力学和光吸收性能, 从而实现H2O2的高效合成.

采用一步希夫碱缩合反应制备含庚嗪基团的COFs催化剂(COF-TpHt).  XRD测试和结构模拟结果表明, COF-TpHt具有共轭的二维平面分子结构且层间通过π-π相互作用有序排列, 这不仅有利于提高材料光吸收能力, 同时也为光生载流子的分离提供了层内和层间传输通道.  紫外可见漫反射吸收光谱结果表明, 该催化剂在400-800 nm的宽范围内具有较好的可见光吸收能力.  稳态和时间分辨荧光光谱结果表明, C3N4λ = 488 nm处具有很强的荧光强度, 而COF-TpHt的荧光强度显著淬灭.  另外, COF-TpHt比C3N4 (8.53 ns)具有更长的荧光平均寿命(9.19 ns)和更大的光电流响应, 这表明COF-TpHt中的电荷复合被有效抑制, 有利于提高光催化反应活性.  在光催化反应中, 以苯甲醇为电子供体, 在可见光(λ > 420 nm)照射下, 该催化剂实现了高达11986 μmol h-1 g-1的H2O2生成速率, 在420 nm处的表观量子效率为38%, 超过了目前报道的大多数有机或无机半导体光催化剂性能.  除此之外, 该催化剂也展现出较好的稳定性, 在连续循环反应4圈(12 h)后仍保持原有的形貌与结构, 且在长达30 h的连续光照反应过程中, H2O2产量仍能保持线性增长, 最终达到2971 μmol, 浓度约为59.4 mmol L-1, 可满足消毒和污水处理的实际应用要求.  综上, 本文材料对光催化的方式获得高浓度H2O2具有独特优势.

关键词: 过氧化氢合成, 光催化, 氧还原, 共价有机框架, 氮化碳

Abstract:

Carbon nitride (C3N4) has been the main research focus for photocatalytic H2O2 synthesis that may enable the on-site and on-demand H2O2 production under mild conditions. Its potential is unfortunately shadowed by the narrow light absorption and fast charge recombination. Building on the understanding of the inherent merits and pitfalls of C3N4, we here propose to assemble active heptazine motifs with functional linkers in ordered molecular frameworks for highly efficient photocatalytic H2O2 production. Herein, a heptazine-based covalent organic framework is synthesized via the Schiff-base reaction. It has enhanced light absorption and charge separation. When irradiated with visible light in the presence of sacrificial electron donors, the sample exhibits an excellent H2O2 production rate of 11986 μmol h-1 g-1 and an apparent quantum efficiency up to 38% at 420 nm, outperforming most organic or inorganic competitors in our best knowledge. Impressively, the catalyst can also endure long time operation that affords the linear H2O2 accumulation to a practically usable concentration.

Key words: H2O2 production, Photocatalysis, Oxygen reduction, Covalent organic frameworks, Carbon nitride