催化学报 ›› 2023, Vol. 46: 4-10.DOI: 10.1016/S1872-2067(22)64197-4

• 观点 • 上一篇    下一篇

有机电化学-电流驱动未来

周鹤洋a, 唐海涛a,*(), 何卫民b,*()   

  1. a广西师范大学化学与药学学院, 省部共建药用资源化学与药物分子工程国家重点实验室, 广西桂林 541004
    b南华大学化学化工学院, 湖南衡阳 421001
  • 收稿日期:2022-09-27 接受日期:2022-11-22 出版日期:2023-03-18 发布日期:2023-02-21
  • 通讯作者: *电子信箱: httang@gxnu.edu.cn (唐海涛),weiminhe@usc.edu.cn (何卫民)
  • 基金资助:
    广西自然科学基金杰出青年基金项目(2021GXNSFFA220005);中央引导地方科技发展资金项目(桂科ZY21195014);国家自然科学基金(22061003);国家自然科学基金(22161008)

The future of organic electrochemistry current transfer

He-Yang Zhoua, Hai-Tao Tanga,*(), Wei-Min Heb,*()   

  1. aState Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, Guangxi, China
    bSchool of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, Hunan, China
  • Received:2022-09-27 Accepted:2022-11-22 Online:2023-03-18 Published:2023-02-21
  • Contact: *E-mail: httang@gxnu.edu.cn (H.-T. Tang), weiminhe@usc.edu.cn (W.-M. He)
  • About author:Hai-Tao Tang received his Ph.D. degree from Xiamen University in 2017 and is currently an Associate Professor at Guangxi University. His current research interests focus on electrochemical synthesis and heterogeneous catalysis
    Wei-Min He obtained Ph.D. degree from Hunan University in 2012 and is currently a Professor at University of South China. His research interest are development of green & sustainable technology in organic synthesis.
  • Supported by:
    Guangxi Natural Science Foundation of China(2021GXNSFFA220005);The National Natural Science Foundation of China(22061003);The National Natural Science Foundation of China(22161008);The Central Government Guides Local Science and Technology Development Fund Projects(guike ZY21195014)

摘要:

电化学中最基本的作用力是电子-原子核之间的静电吸引力, 它通过施加电势使电子加入或脱离与原子核的相互作用, 因而, 它是最经典的氧化还原化学.  1800年第一个电池Volta Pile的发明实现了电子在电路中的流动, 标志着有机电化学的开端.  自19世纪以来, 在科技革命的浪潮中, 有机电化学合成取得了巨大发展, 例如美国Manuel M. Baizer教授研究的丙烯腈电解还原二聚合成己二腈实现了工业化生产;  纳尔科化学公司随后实现了四乙基铅的电化学工业化合成.  这两个工业化案例的成功, 使有机电化学合成进入了快速发展期.  氧化还原是化学反应中的三大基本反应之一, 对其进行研究, 能极大地促进人类社会的发展.  近年, 有机合成工作者通过电化学策略代替传统氧化还原试剂实现了一系列氧化脱氢交叉偶联、还原偶联、金属介导的C‒H键活化、不对称合成反应, 极大地丰富了复杂化合物的合成方法库.  

有机电化学相比于传统的氧化还原化学, 其采用无痕的电子作为氧化还原试剂, 不仅廉价绿色, 而且通过对电流、电压等方面的调节能高效地产生各种活性反应中间体, 在复杂分子的合成中展现出极大的合成优势.  

本文主要从有机电化学反应机制优化以及跨学科新方法学的开发两个角度对未来有机电化学合成发展趋势做出展望.  在反应机制优化方面, 首先结合部分代表性工作, 对电极材料、氧化还原催化剂的选择及修饰进行简要的评述;  其次, 为使有机电化学反应更具普适性, 对电化学装置的开发提出期望;  再次, 简述了循环伏安曲线在电化学反应机理解释中的应用.  另一方面, 在学科联系日益紧密的形势下, 对有机电化学跨(交叉)学科研究方法的发展如有机光电合成、生物电合成等领域进行了简述, 对这两个领域代表性工作进行了简要介绍.  同时受到人工智能在高通量化学反应研究自主学习能力的启发, 设想未来可将人工智能与有机电化学合成紧密结合, 通过其高效的分析学习能力指导有机电化学合成, 为电化学合成带来新的机遇.  

关键词: 有机电化学合成, 电子转移, 氧化还原反应

Abstract:

The electrostatic attraction between electrons and nuclei is a fundamental force in electrochemistry. This force drives the interaction between electrons and nuclei, providing the potential for redox reactions. As a result, it is the basis of redox chemistry. In recent years, organic electrochemistry has made significant progress in oxidative hydrogen evolution coupling and sacrificial anode electroreduction, thanks to its efficient and environmentally friendly capacity to create reactive intermediates. This paper focuses on several areas in the field of electrochemistry, including optimizing electrode materials, developing new electrolytic catalysts, paired electrolysis, photoelectrocatalysis, bioelectrosynthesis, and artificial intelligence-assisted electrosynthesis. The aim is to optimize reaction mechanisms and explore interdisciplinary combinations.

Key words: Organic electrochemical synthesis, Electron transfer, Redox reaction