催化学报 ›› 2023, Vol. 46: 177-190.DOI: 10.1016/S1872-2067(22)64199-8

• 论文 • 上一篇    

钯化学态对g-C3N4光催化还原CO2的影响: 单原子态在促进CH4生成中的独特作用

李钱a,c,d, 唐麒君a,b, 熊珮瑶a,b, 陈东之c,d, 陈建孟c,d, 吴忠标a,b,*(), 王海强a,b,*()   

  1. a浙江大学环境与资源学院, 污染环境修复与生态健康教育部重点实验室, 浙江杭州 310058
    b浙江省工业锅炉炉窑烟气污染控制工程技术研究中心, 浙江杭州 311202
    c浙江海洋大学石油化工与环境学院临港石油天然气储运技术国家地方联合工程研究中心, 浙江舟山 316022
    d浙江省石油化工环境污染控制重点实验室, 浙江舟山 316004
  • 收稿日期:2022-09-14 接受日期:2022-11-24 出版日期:2023-03-18 发布日期:2023-02-21
  • 通讯作者: *电子信箱: haiqiangwang@zju.edu.cn (王海强),zbwu@zju.edu.cn (吴忠标)
  • 基金资助:
    国家自然科学基金(51978603);国家自然科学基金(51878598);浙江省151人才工程项目;浙江省重点科技创新团队计划项目(2013TD07);长江学者奖励计划

Effect of palladium chemical states on CO2 photocatalytic reduction over g-C3N4: Distinct role of single-atomic state in boosting CH4 production

Qian Lia,c,d, Qijun Tanga,b, Peiyao Xionga,b, Dongzhi Chenc,d, Jianmeng Chenc,d, Zhongbiao Wua,b,*(), Haiqiang Wanga,b,*()   

  1. aKey Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resources Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
    bZhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou 311202, Zhejiang, China
    cNational-Local Joint Engineering Laboratory of Harbor Oil & Gas Storage and Transportation Technology, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China
    dZhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316004, Zhejiang, China
  • Received:2022-09-14 Accepted:2022-11-24 Online:2023-03-18 Published:2023-02-21
  • Contact: *E-mail: haiqiangwang@zju.edu.cn (H. Wang), zbwu@zju.edu.cn (Z. Wu)
  • Supported by:
    National Natural Science Foundation of China(51978603);National Natural Science Foundation of China(51878598);Zhejiang Provincial “151” Talents Program;Program for Zhejiang Leading Team of S&T Innovation(2013TD07);Changjiang Scholar Incentive Program (Ministry of Education, China, 2009)

摘要:

化石燃料过度消耗引起的CO2过量排放和能源短缺问题日益突出.  利用太阳能和光催化剂将CO2转化成高附加值化学原料, 可以同时缓解温室效应与能源短缺, 是实现“碳中和”与社会可持续发展的有效途径.  目前在光催化剂合成方面已取得巨大进步, 但由于电荷重组严重, 表面反应动力学迟缓, CO2还原效率仍普遍偏低.  助催化剂修饰是改善催化剂催化CO2还原效率的有效策略.  贵金属是提升催化剂性能最显著的一类助催化剂, 然而其资源有限, 优格昂贵, 将贵金属助催化剂的尺寸减小至单原子, 可以最大限度地提高原子利用率, 大幅降低成本, 显著提升催化剂的催化性能.  现有研究在揭示贵金属助催化剂性能提升机制时, 主要集中在其对基底材料性质的影响, 忽略了单原子态与其它化学价态的区别.  因此本文以g-C3N4(CN)纳米片为基底, 研究Pd单原子(Pd-SA), PdOx, Pd纳米颗粒(Pd-NP)修饰对CN光催化还原CO2性能的影响及性能提升差异显著的内在机制.  

利用透射电子显微镜、高角度环形暗场扫描透射电子显微镜、X射线光电子能谱、基于同步辐射的X射线吸收谱等手段确定Pd物种在CN表面的存在形态和化学价态.  性能测试结果表明, 三种形态Pd修饰均可促进CN光催化还原CO2的性能, 但提升效果存在显著差异.  Pd/CN-SA上的CH4产量约2.25 μmol/g, 明显高于PdOx/CN (1.08 μmol/g), Pd/CN-NP (0.44 μmol/g)和CN (0.104 μmol/g);  Pd修饰后, CN的CH4选择性明显提高, 其中Pd/CN-SA的CH4选择性高达73.5%, 优于PdOx/CN(67.2%)和Pd/CN-NP(60%).  光电性质分析结果表明, Pd修饰有效提升了CN的光吸收性能, 显著促进了载流子的迁移与分离, 且Pd/CN-NP和PdOx/CN的有效光生电子密度较Pd/CN-SA更高, 结果说明样品的光电性质不是影响其光催化还原CO2活性的关键因素.  CO2-PPD结果表明, Pd/CN-SA表面具有丰富的中等强度的碱性位(HCO3), 更有利于CO2吸附与活化.  H+的产生通常伴随着•OH和•O2的形成, 因此根据电子自旋共振获得的•OH和•O2产量可推测出, Pd/CN-NP可形成最丰富的H+, PdOx/CN次之, Pd/CN-SA最低.  H2吸附实验结果表明, 在氢溢流效应的影响下, Pd修饰显著促进了CN对H2的吸附, 且Pd/CN-SA对H2的吸收量最大, 说明H2在Pd-SA表面更易发生解离形成•H, 这可能是其CH4产量较高的重要原因.  对比了以H2和H2O为还原剂时的CO2光催化还原性能, 结果表明, PdOx/CN和Pd/CN-SA的CH4产量分别下降了66.3%和28.6%, Pd/CN-NP的甲烷产量反而提高, 说明Pd/CN-NP可能具有较好的•H利用效率, 其以H2O为还原剂时的低CH4产量可能受限于•H的形成.  为进一步验证该推测, 利用DFT模拟研究了H2O分子在Pd/CN-NP, PdOx/CN和Pd/CN-SA表面的吸附解离能, 结果表明, H2O分子在Pd/CN-SA表面的活化能最低, 最有利于•H的形成.  此外, 完整的H2O解离反应过程中Pd/CN-NP会释放出0.40 eV能量, Pd/CN-SA与PdOx/CN则需补充额外的能量(0.51和1.47 eV), 再次强有力地证明Pd/CN-NP具有较好的•H利用效率.  最后, 利用原位红外分析了各样品光催化还原CO2反应过程的差异, 发现Pd/CN-SA表面的CO2吸附态物种在可见光照射下更容易参与至后续的光催化还原反应中;  PdOx/CN和Pd/CN-NP表面的CO2吸附态物种含量足够丰富, 但由于它们的光生电子还原能力有限, 无法将吸附物种进一步还原;  Pd/CN-SA和Pd/CN-NP表面吸附的CO可进一步被还原成甲氧基, 但吸附在PdOx/CN表面的CO难以被进一步还原.  综上, 本文揭示了贵金属Pd的化学价态对CO2还原性能的关键作用, 对未来合理设计开发更有效的CO2还原光催化剂具有借鉴意义.  

关键词: CO2光催化还原, 化学价态, Pd, G-C3N4, H原子利用

Abstract:

Cocatalyst decoration has been recognized as an effective strategy in photocatalysis, yet the critical role of sing-atomic state on CO2 photocatalytic reduction, distinguished from the oxide and elemental states, remains a mystery hitherto. Herein, single-atom Pd (Pd-SA), Pd oxides (PdOx), and Pd nanoparticles (Pd-NP), were homogeneously anchored on g-C3N4 (CN) to investigate their CO2 reduction behaviors under visible-light irradiation. Performance tests showed Pd species decoration improved the CH4 production of CN, with Pd/CN-SA exhibiting the optimum yields (2.25 μmol g-1), markedly higher than that of PdOx/CN (1.08 μmol g-1) and Pd/CN-NP (0.44 μmol g-1). After comprehensive mechanism analysis with various characterization techniques, in-situ DRIFT spectra and DFT calculations, it was found that the conducive activation of CO2, negative conduction band potentials, and excellent •H utilization efficiency, collaboratively contributed to the superior CH4 production of Pd/CN-SA. Despite the larger electron density of Pd/CN-NP and PdOx/CN, the moderate reduction ability of their photogenerated electrons restricted the further reduction of adsorbed CO2 species and CO intermediate, limiting the enhancement of CO2 reduction activity. Furthermore, the CH4 evolutions of Pd/CN-NP and PdOx/CN were also limited by the poor •H supply and inferior •H utilization efficiency, respectively. It is expected that the effect of chemical states, especially the critical role of single-atomic state, revealed in this work can inspire the rational design of more advanced photocatalysts for CO2 reduction.

Key words: CO2 photocatalytic reduction, Chemical states, Palladium, G-C3N4, Atomic hydrogen utilization