催化学报 ›› 2023, Vol. 45: 6-16.DOI: 10.1016/S1872-2067(22)64186-X

• 述评 • 上一篇    下一篇

化学功能化增强贵金属纳米晶电催化性能

薛淇a,b, 王喆a, 丁钰a, 李富民a,c,*(), 陈煜a,*()   

  1. a陕西省大分子科学重点实验室, 应用表面与胶体化学教育部重点实验室, 陕西省先进能源器件重点实验室, 陕西省先进能源技术工程实验室, 陕西师范大学材料科学与工程学院, 陕西西安710062
    b西安建筑科技大学化学与化工学院, 陕西西安710055
    c华中科技大学化学与化工学院, 湖北武汉430074
  • 收稿日期:2022-08-18 接受日期:2022-10-17 出版日期:2023-02-18 发布日期:2023-01-10
  • 通讯作者: 李富民,陈煜
  • 基金资助:
    国家自然科学基金(21875133);陕西省自然科学基金(2020JZ-23);中国博士后科学基金(2022M711231);中国博士后科学基金(2022M710088);中央高校基本科研业务费专项资金(GK202202001);111工程(B14041)

Chemical functionalized noble metal nanocrystals for electrocatalysis

Qi Xuea,b, Zhe Wanga, Yu Dinga, Fumin Lia,c,*(), Yu Chena,*()   

  1. aKey Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062, Shaanxi, China
    bSchool of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi, China
    cSchool of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • Received:2022-08-18 Accepted:2022-10-17 Online:2023-02-18 Published:2023-01-10
  • Contact: Fumin Li, Yu Chen
  • About author:Fumin Li received his PhD at Shaanxi Normal University in 2020. Now he is a postdoctor at Huazhong University of Science and Technology. His research interests focus on the advanced noble metal nanomaterials for electrochemical applications
    Yu Chen received his PhD from School of Chemistry and Chemical Engineering in Nanjing University in 2009. He is currently a professor at School of Materials Science and Engineering at Shaanxi Normal University. His research interests include the control synthesis of noble metal nanocrystals, the fabrication and application of metal-organic interface, and the electrocatalysis.
  • Supported by:
    National Natural Science Foundation of China(21875133);Natural Science Foundation of Shaanxi Province(2020JZ-23);China Postdoctoral Science Foundation(2022M711231);China Postdoctoral Science Foundation(2022M710088);Fundamental Research Funds for the Central Universities(GK202202001);111 Project(B14041)

摘要:

基于电催化过程的可再生和清洁能源的生产、转换和储存技术(如水电解和燃料电池)是缓解全球能源短缺和环境污染问题的有效手段. 目前, 水电解和燃料电池技术的实际应用缺乏高效、稳定的电催化剂来驱动动力学迟缓的阴极和阳极反应. 贵金属纳米晶由于其独特的电子结构和高化学惰性而具有高电催化活性和稳定性. 为了提升贵金属纳米晶的本征电催化性能, 大量研究聚焦在利用面积效应、晶面效应和不同组分之间的协同效应来调控贵金属的粒径、形貌和化学成分. 事实上, 贵金属纳米晶的电催化性能也与其表/界面性质密切相关. 电催化剂表面的化学功能化可以改变电极/电解质界面结构, 从而提高电催化活性和选择性, 这对开发新型高效的电催化剂具有重要的理论意义.
本文系统介绍了本课题组开发的聚胺(PAM)功能化贵金属纳米电催化剂的合成方法及其在燃料电池和电解池等能源转换装置中的应用, 具体包括: 通过引入PAM控制反应动力学来调控纳米晶体的结构和形态, 构建界面功能化贵金属纳米电催化剂; 利用金属表面修饰的PAM分子改变表面催化位点的电子结构、配位环境等物理化学性质来控制反应物和中间体等的吸附行为, 从而达到调节催化活性的目的; 采用PAM分子来隔离特定活性位点, 形成空间位阻, 改变金属表面位点的可及性, 影响催化反应中反应物的吸附, 从而实现对目标反应的选择性.
从优化催化性能和通过电催化过程实现高效能量转换的角度, 本文列举了PAM功能化催化剂在氧还原反应、析氢反应、甲酸氧化反应和硝酸盐还原反应等重要反应中的最新研究进展; 总结了化学功能化贵金属电催化剂的研究进展、当前不足, 提出了挑战和未来前景. 综上, 本文旨在激发对表面/界面功能化及其催化行为的深入研究, 从而推进未来与电催化技术相关的可再生能源的生产和环境保护.

关键词: 贵金属纳米晶体, 化学功能化, 电催化, 质子富集, 界面位阻, 路径优化

Abstract:

Electrocatalysis is an interface-dominated process, in which the activity of the catalyst highly relates to the adsorption/desorption behaviors of the reactants/intermediates/products on the active sites. From the perspective of catalyst design, the chemical functionalization design on noble metal surfaces will inevitably affect the reaction process, which is considered to be one of the effective strategies to tune the electrocatalytic performance of noble metal nanocrystals. Polyamines (PAM) with high stability and good coordination ability have been widely studied as important functional molecules. In this account, we first introduce the PAM-assisted synthesis mechanism of noble metal nanocrystals, which provides a theoretical basis and guidance for their design and optimization with controllable morphology. Then, the effects of adsorbed PAM on the electronic structure, geometric structure, electrode/electrolyte interface structure and catalytic reaction pathway of noble metal-based catalysts are specifically described. The internal mechanism of noble metal-PAM interfacial effect increasing catalyst activity and selectivity is stated, and the latest research progress of PAM functionalized catalysts applied in important reactions is listed, such as hydrogen evolution reaction, oxygen reduction reaction, formic acid oxidation reaction, and nitrate reduction reaction, and so on. These findings open a new avenue for constructing advanced electrocatalysts based on inorganic/organic polymer-mediated interface engineering in various energy-related catalysis/electrocatalysis fields. Finally, the current challenges and future prospects of PAM molecule functionalized noble metal electrocatalysts are proposed.

Key words: Noble metal nanocrystal, Chemical functionalization, Electrocatalysis, Proton enrichment, Interface screen, Pathway optimization