催化学报 ›› 2023, Vol. 48: 267-278.DOI: 10.1016/S1872-2067(23)64420-1

• 论文 • 上一篇    下一篇

LSPR效应增强碳包覆In2O3/W18O49 S型异质结用于高效CO2光还原

何厚伟1, 王中辽1, 代凯*(), 李素文*(), 张金锋*()   

  1. 淮北师范大学物理与电子信息学院, 绿色和精准合成化学及应用教育部重点实验室, 污染物敏感材料与环境修复安徽省重点实验室, 安徽淮北235000
  • 收稿日期:2023-01-18 接受日期:2023-02-28 出版日期:2023-05-18 发布日期:2023-04-20
  • 通讯作者: * 电子信箱: daikai940@chnu.edu.cn (代凯), swli@chnu.edu.cn (李素文), jfzhang@chnu.edu.cn (张金锋).
  • 作者简介:第一联系人:

    1共同第一作者

  • 基金资助:
    国家自然科学基金(22278169);国家自然科学基金(51973078);安徽省高校优秀科研创新团队(2022AH010028);安徽省教育厅重大项目(2022AH040068)

LSPR-enhanced carbon-coated In2O3/W18O49 S-scheme heterojunction for efficient CO2 photoreduction

Houwei He1, Zhongliao Wang1, Kai Dai*(), Suwen Li*(), Jinfeng Zhang*()   

  1. Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Province Key Laboratory of Pollutant SensitiveMaterials and Environmental Remediation, College of physics and Electron Information, Huaibei Normal University, Huaibei 235000, Anhui, China
  • Received:2023-01-18 Accepted:2023-02-28 Online:2023-05-18 Published:2023-04-20
  • Contact: * E-mail: daikai940@chnu.edu.cn (K. Dai), swli@chnu.edu.cn (S. Li), jfzhang@chnu.edu.cn (J. Zhang).
  • About author:First author contact:

    1Contributed equally to this work.

  • Supported by:
    National Natural Science Foundation of China(22278169);National Natural Science Foundation of China(51973078);Excellent scientific research and innovation team of Education Department of Anhui Province(2022AH010028);Major projects of Education Department of Anhui Province(2022AH040068)

摘要:

太阳能驱动的光催化CO2还原(PCR)技术可以将CO2转化为增值燃料, 被认为是可以解决化石能源的日益减少和环境污染问题的可持续能源转换技术. CO2的光催化还原涉及多种催化剂和反应途径, 构建异质结催化剂是提高光催化CO2还原效率的重要策略. 然而, 异质结催化剂的光吸收范围一直是影响其性能的重要因素. 在增强近红外区光吸收的众多材料中, 具有局部表面等离子体共振(LSPR)效应的非贵金属等离子体材料是合适的选择. W18O49具有特殊的缺陷结构和LSPR效应, 可以产生高能"热电子"并促进载流子转移, 进一步优化了W18O49敏化光催化复合材料的设计, 在光催化中显示出非凡的潜力和研究价值.
本文在源自In-MOF的碳包覆In2O3(C-In2O3)纳米棒外表面组装一维高吸光度W18O49纳米线, 设计和制备C-In2O3/W18O49分级S型异质结. 采用X射线衍射、扫描电镜和透射电镜对样品进行了结构和形貌表征, 结果表明, 成功制备了C-In2O3/W18O49复合材料. 通过X射线光电子能谱和密度泛函理论计算分析了电子流向, 验证了S型异质结的机理. 使用原位漫反射红外傅里叶变换光谱、气相色谱和同位素标定进一步确定了PCR反应中间体活化过程和反应产物, 其中40%C-In2O3/W18O49复合材料的CO产率最高, 达到135.82 µmol·h-1·g-1, 分别是纯C-In2O3和W18O49的2.99和2.84倍. 采用时间分辨瞬态光致发光光谱测定样品的荧光寿命, 结果表明, C-In2O3/W18O49复合材料拥有更长的载流子衰变动力学的平均寿命(4.0707 ns), 表明复合材料可以更有效地利用可见光进行光催化反应.
C-In2O3/W18O49复合材料较好的催化性能主要归因于以下两个方面. (1) 碳涂层的高电子电导率促进了C-In2O3和W18O49之间的电荷转移, 载流子在非均相界面的均匀分布和高清的转移是光催化活性提高的重要原因; (2) S型异质结中的内部电子转移和注入C-In2O3的LSPR诱导的“热电子”实现了PCR的双路径电子转移, 从而使得PCR反应的活性得到了显著提高. 综上, 本文为开发高效可见光催化剂提供了新思路和实验依据.

关键词: 光催化CO2还原, S型异质结, 局部表面等离子体共振, 碳包覆氧化铟, W18O49

Abstract:

The special defect structure and localized surface plasmon resonance (LSPR) effect offer W18O49 extraordinary potential and research value in photocatalysis. The LSPR effect optimizes the design of W18O49-sensitized photocatalytic composites and broadens the light-response range of W18O49. However, the high-energy “hot electrons” generated by W18O49 under the LSPR effect exhibit an extremely short lifetime and cannot be fully utilized. Therefore, the high electron conductivity of carbon can be used to increase the rate of hot-electron transfer, thereby extending the lifetime of hot electrons. In this study, a heterojunction photocatalyst was formed by growing a high-absorbance one-dimensional nanowire W18O49 on the surface of carbon-coated porous In2O3 nanorods (C-In2O3) derived from In-MOF. The C-In2O3/W18O49 composites exhibited optical responses in both the visible and near-infrared regions. The carbon coatings acted as transport channels to accelerate the transfer of carriers and hot electrons, and the activity of photocatalytic CO2 reduction (PCR) was significantly enhanced. The 40%C-In2O3/W18O49 composites had the highest CO yield in the photocatalytic reactions, which was 2.99 and 2.84 times greater than that of pure C-In2O3 and W18O49, respectively. The internal electronic transfer in the S-scheme heterojunction and LSPR-induced hot electrons injected into C-In2O3 achieved dual-path electron transfer for PCR.

Key words: Photocatalytic CO2 reduction, S-scheme heterojunction, Localized surface plasmon resonance, Carbon-coated In2O3, W18O49