催化学报 ›› 2023, Vol. 48: 247-257.DOI: 10.1016/S1872-2067(23)64426-2

• 论文 • 上一篇    下一篇

Rh氧化物团簇向单原子的原位自适应演化

蒲正天a, 殷海滨a, 马新龙a, 赵瑾b,c, 曾杰a,*()   

  1. a中国科学技术大学化学物理系, 合肥微尺度物质科学国家研究中心, 安徽省教育厅表界面化学与能源催化重点实验室, 安徽合肥230026, 中国
    b中国科学技术大学物理系, 合肥微尺度物质科学国家研究中心国际功能材料量子设计中心, 安徽合肥230026, 中国
    c匹兹堡大学物理与天文系, 宾夕法尼亚州匹兹堡, 美国
  • 收稿日期:2023-01-04 接受日期:2023-03-09 出版日期:2023-05-18 发布日期:2023-04-20
  • 通讯作者: * 电子信箱: zengj@ustc.edu.cn (曾杰)
  • 基金资助:
    国家重点研发计划(2021YFA1500500);国家重点研发计划(2019YFA0405600);中国科学院稳定支持基础研究领域青年团队计划(YSBR-051);国家杰出青年科学基金(21925204);安徽省联合基金重点项目(U19A2015);国家自然科学基金创新团队项目(22221003);国家自然科学基金原创探索计划项目(22250007);国家自然科学基金青年项目(21902149);中央高校基本科研专项资金;安徽省面上攻关(202004a05020074);中国科学院王宽诚教育基金(GJTD-2020-15);中国科学院洁净能源创新研究院合作基金(DNL202003)

In-situ adaptive evolution of rhodium oxide clusters into single atoms via mobile rhodium-adsorbate intermediates

Zhengtian Pua, Haibin Yina, Xinlong Maa, Jin Zhaob,c, Jie Zenga,*()   

  1. aHefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, China
    bDepartment of Physics, ICQD/Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
    cDepartment of Physics and Astronomy, University of Pittsburgh, Pittsburgh 15260, Pennsylvania, USA
  • Received:2023-01-04 Accepted:2023-03-09 Online:2023-05-18 Published:2023-04-20
  • Contact: * E-mail: zengj@ustc.edu.cn (J. Zeng)
  • Supported by:
    National Key Research and Development Program of China(2021YFA1500500);National Key Research and Development Program of China(2019YFA0405600);CAS Project for Young Scientists in Basic Research(YSBR-051);National Science Fund for Distinguished Young Scholars(21925204);National Natural Science Foundation of China(U19A2015);National Natural Science Foundation of China(22221003);National Natural Science Foundation of China(22250007);National Natural Science Foundation of China(21902149);Fundamental Research Funds for the Central Universities;Provincial Key Research and Development Program of Anhui(202004a05020074);K. C. Wong Education(GJTD-2020-15);DNL Cooperation Fund, CAS(DNL202003)

摘要:

负载型金属催化剂在催化过程中通常会发生相变、烧结、表面重构和解离为单原子等变化. 这样的结构演化不仅可以由温度诱导, 也可以由反应产生的吸附物种诱导. 然而, 结构的变化对催化剂的影响存在两面性, 既可能因此形成新的活性位点, 也可能导致催化剂失活. 因此, 希望催化剂在反应中进行适应反应环境的结构演化, 从而形成更高效的活性位点. 结构演化的途径可以是金属物种直接在催化剂表面迁移, 即固-固路径; 也可以是催化剂表面原子浸出到溶液中, 即固-液路径. 揭示具体催化剂的演化路径, 对催化剂的设计与改良有重要意义.
本文通过浸渍-煅烧法将RhOx团簇负载在Al2O3上. 然而, 该催化剂在氢甲酰化初始阶段并不具备反应活性, 但其在反应过程中由CO诱导, 原位演化成了具备催化活性的缺陷位点与Rh单原子. 活化后的催化剂在110 °C, 30 bar合成气的条件下, 丙烯氢甲酰化的比活性达到了3.0 × 104 mol molRh-1 h-1. 通过高角环形暗场像-扫描透射电子显微镜观察了活化前后催化剂表面RhOx团簇的结构变化和Rh单原子的形成, 利用X射线光电子能谱、X射线吸收精细结构谱和原位漫反射傅里叶变换红外光谱观察了催化剂价态和配位结构的变化以及CO气体处理对催化剂的直接影响, 结果表明, 催化过程中没有形成Rh-Rh金属键, 从而避免了Rh的团聚失活; 通过电子顺磁共振测试研究了催化过程中催化剂表面缺陷浓度随时间的变化.
通过电感耦合等离子体-原子发射光谱验证了Al2O3和CeO2均能吸附均相Rh物种, 并引入吸附能力更强的CeO2捕获氢甲酰化反应中从Rh/Al2O3固体进入溶液中的Rh物种, 利用CO探针红外检验了Rh的配位情况, 证实了Rh物种的溶解-再吸附演化过程. 对Rh/Al2O3的热过滤实验结果表明, 均相Rh物种提供了18.6%的总活性, 但回收后催化剂的活性损失和Rh含量的流失远低于该数字, 表明部分再吸附作用在一定程度上提高了催化剂的稳定性.
结构表征和机理研究揭示了Rh物种的固-固和固-液-固两种原位演化路径. 在催化过程中, RhOx团簇被CO还原形成氧缺陷, 使得周围的Rh原子获得了吸附CO的能力. 同时, Rh物种在反应底物和溶剂的作用下, 溶解到溶液中, 进而部分再吸附回到载体上. 综上, 本文不仅提供了一种高效的丙烯氢甲酰化催化剂, 也加深了对催化剂动态演化的认识.

关键词: 氢甲酰化反应, 动态演化, 团簇, 单原子, 重构

Abstract:

It is a common phenomenon for supported metal catalysts to undergo thermally-induced or adsorbate-induced reconstruction. Great efforts have been devoted to making these reconstruction adaptive to the reaction environment instead of deactivation. Herein, we reported the evolution of initially inactive RhOx clusters on Al2O3 into the formation of catalytically active oxygen vacancies and Rh single atoms via mobile Rh-CO intermediates during hydroformylation of propene. The activated catalyst exhibited a high specific activity of 3.0 × 104 mol molRh-1 h-1 towards hydroformylation reaction. Mechanistic studies revealed the evolution paths. Specially, RhOx clusters were reduced by CO to form oxygen vacancy where the surrounding unsaturated Rh atoms enabled the chemisorption of CO*. Rh atoms that were ejected from RhOx clusters diffused on Al2O3 supports to generate Rh single atom via the formation of carbonyl or geminal dicarbonyl species. Meanwhile, the Rh atoms on clusters were also leached to the solution by the adsorbed CO molecules, followed by partial re-adsorption on the support. This work not only offers an efficient catalyst for propene hydroformylation, but also advances the understandings of dynamic evolution of catalysts.

Key words: Propene hydroformylation, Dynamic evolution, Cluster, Single atom, Reconstruction