催化学报 ›› 2023, Vol. 48: 15-31.DOI: 10.1016/S1872-2067(23)64427-4
收稿日期:
2023-02-14
接受日期:
2023-02-26
出版日期:
2023-05-18
发布日期:
2023-04-20
通讯作者:
* 电子信箱: 基金资助:
Wenjing Zhang, Jing Li*(), Zidong Wei*(
)
Received:
2023-02-14
Accepted:
2023-02-26
Online:
2023-05-18
Published:
2023-04-20
Contact:
* E-mai: About author:
Jing Li received her B.A. degree from Tianjin University in 1999, and Ph.D. degree from National University of Singapore in 2008. After postdoctoral research at the Fudan University, she joined the faculty of Tongji University as an associate professor in 2011 and Chongqing University as a professor in 2014. She has been in charge of 2 National Key Research and Development Program of China and 3 National Natural Science Foundation of China. Her research interests include porous materials, fuel cells and electrocatalysis. She has published more than 80 papers with citation over 8000 times.Supported by:
摘要:
由于快速增长的能源需求和日益紧迫的环境问题, 清洁和可再生能源的开发受到全球范围的高度关注. 质子交换膜燃料电池(PEMFC)可以直接把燃料所具有的化学能转换为电能, 具有转化效率高、环境污染小和比能量高等优点, 广泛应用于汽车、飞机等交通工具以及固定电站等领域. PEMFC中阴极侧的氧还原反应(ORR), 由于多重质子-电子转移和固有的缓慢动力学, 是影响燃料电池整体效率的重要因素. Pt基催化剂由于能够提供较好的催化性能而被认为是较好的阴极材料. 然而, 广泛使用的Pt基催化剂因成本较高和资源短缺等问题严重阻碍了PEMFC的大规模应用. 因此, 设计开发非贵金属阴极催化剂对于降低催化剂的成本十分必要. 其中, 碳基催化剂因具有较好的导电性和化学稳定性, 已经成为ORR领域中贵金属催化剂强有力的替代品之一.
本文从碳基催化剂的活性位点和孔道结构出发, 系统总结和讨论了提高催化剂活性、稳定性和抗中毒性能等方面的研究进展. 首先, 简单介绍了ORR反应的机理以及碳基催化剂在反应过程中存在的主要问题, 即本征活性低, 活性位密度低, 体积密度小以及稳定性差等. 然后, 针对以上问题, 提出了构筑高活性和高稳定性碳基催化剂的策略. 在碳载体中掺杂适量的杂原子和金属原子有助于构建具有高本征活性的催化位点, 将金属纳米颗粒设计成原子级和超小纳米团簇有助于增加活性位点的数目. 对于目前使用最广泛的Fe-N-C催化剂, 从理论上解释了其在酸性介质中活性位点极易失活的主要原因, 提出制备具有优异稳定性ORR催化剂的解决方案. 孔道结构作为催化剂微观结构的重要组成部分, 对活性位点的分布和传质具有十分重要的影响. 从合成策略和不同孔径大小对ORR性能影响的两个角度出发, 具体论述了现有文献中所报道的制备微孔、介孔和大孔三种孔道结构的方法, 同时详细讨论了三种孔结构在ORR中的作用. 最后, 基于活性位点的设计和多孔结构的构建, 对设计和制备高效碳基电催化剂进行了总结, 展望了碳基催化剂未来的发展和研究思路.
张文静, 李静, 魏子栋. 碳基氧还原电催化剂: 机理研究和多孔结构[J]. 催化学报, 2023, 48: 15-31.
Wenjing Zhang, Jing Li, Zidong Wei. Carbon-based catalysts of the oxygen reduction reaction: Mechanistic understanding and porous structures[J]. Chinese Journal of Catalysis, 2023, 48: 15-31.
Fig. 2. (a) Electrocatalytic mechanism of the oxygen reduction reaction. (b) Volcano plot of oxygen reduction activity as a function of the oxygen binding energies (ΔEO) of different metals. Reproduced with permission from Ref. [32]. Copyright 2004, American Chemical Society. (c) Volcano plot of log(j0) (A cm-2) as a function of adsorption free energy ΔGOOH*. Reproduced with permission from Ref. [29]. Copyright 2014, American Chemical Society.
Fig. 4. (a) Schematic diagram of the Fe SAs-N/C-x composite. (b) Free energy diagram at U = 0.13 V (vs. the standard hydrogen electrode). (a,b) Reproduced with permission from Ref. [47]. Copyright 2018, American Chemical Society. (c) Mechanism of catalyst formation using CoCl2 and Co2+-SCN-. Reproduced with permission from Ref. [48]. Copyright 2019, Elsevier Inc.
Fig. 5. (a) Schematic diagram of the synthesis; transmission electron microscopy (TEM) (b), high-angle annular dark-field scanning TEM images (c,d) and the corresponding mappings (e-i) of atomically dispersed FeN2 on ordered mesoporous carbon in FeN2/NOMC-3. (a-i) Reproduced with permission from Ref. [49]. Copyright 2017, Elsevier Inc. (j) Schematic diagram of the syntheses of Co-N-C catalysts with different active site structures. Reproduced with permission from Ref. [50]. Copyright 2018, Elsevier Inc.
Fig. 6. (a) Preparation of NG@MMT. Reproduced with permission from Ref. [56]. Copyright 2013, Wiley-VCH. (b) Relationship between ORR overpotential and ΔG*OOH for all carbon active sites, with the ligand, charge, and spin effects indicated. The charge (c), ligand (d), and spin density (e) effects at each carbon active site shown separately in the distribution of ΔG*OOH. Reproduced with permission from Ref. [57]. Copyright 2018, Royal Society of Chemistry.
Fig. 7. (a) Different degradation mechanisms of an Fe-N-C catalyst. Reproduced with permission from Ref. [58]. Copyright 2021, The Royal Society of Chemistry. (b) Comparison of the polarization curves of Zn-N-C and Fe-N-C catalysts before and after aging. (c) Free energy diagram of the metal corrosion of different metal hydroxides based on the M-N4 (M = Zn/Fe) structure. (b,c) Reproduced with permission from Ref. [59]. Copyright 2019, Wiley-VCH.
Fig. 8. ORR polarization curves and mass activities of Pt/C (a,b) and BP-FeNC (c,d) catalysts in different electrolytes. Reproduced with permission from Ref. [65]. Copyright 2018, Elsevier Inc. (e) Synthesis of PNC. The ORR polarization curves of PNC (f) and Pt/C (g) in 0.1 mol L-1 HClO4 in the presence of NO2-, SO32-, and HPO42-. (e,f) Reproduced with permission from Ref. [66]. Copyright 2018, Wiley-VCH.
Fig. 9. (a) Schematic diagram of the macro-micropore morphologies and charge/mass transfer in Fe/N/FC nanofiber network catalysts. Reproduced with permission from Ref. [69]. Copyright 2015, National Academy of Sciences. (b) Schematic diagram of the synthesis of Fe/NC-NaCl. (c) Relationship between the site density (SD) of FeN4 sites and the micropore surface areas of the prepared catalysts. (d) Relationship between the Jk@0.83 V and the SD (in blue); the correlation between the peak power density and SD (in red) of the prepared catalysts. Reproduced with permission from Ref. [71]. Copyright 2021, Wiley-VCH. (e) Schematic diagram of the active sites within the micropores of the carbon support. Reproduced with permission from Ref. [70]. Copyright 2009, The American Association for the Advancement of Science.
Fig. 10. TEM (a,b) and scanning electron microscopy (SEM) (c) images of the Co-N/C catalysts prepared using different hard templates and their corresponding N2 adsorption-desorption isotherms (d). Reproduced with permission from Ref. [73]. Copyright 2013, American Chemical Society. (e) Schematic diagram of the preparation of an Fe-N-C catalyst with a 3D cubic carbon framework. Reproduced with permission from Ref. [75]. Copyright 2017, American Chemical Society. (f) Schematic diagram of the Fe-Nx-decorated CNT catalyst, with ZnO as the reaction template. Reproduced with permission from Ref. [76]. Copyright 2019, Wiley-VCH.
Fig. 11. (a) Schematic diagram of the preparation of the m-FePhen-C catalyst using F127 as the soft template. Reproduced with permission from Ref. [77]. Copyright 2018, Elsevier Inc. (b) Diagram of the syntheses of the FexNC-Ar700-NH3-y% catalysts. (c) Microstructure diagram of Fe/N/C catalysts with different pore structures and numbers of active sites. Reproduced with permission from Ref. [78]. Copyright 2017, American Chemical Society.
Fig. 12. (a) Synthetic procedures of hierarchically porous Fe-N-C nanotube catalysts. (b) ORR polarization curves of several catalysts. (c) Single-cell polarization curves of the Fe-N-C and Pt/C catalysts. Reproduced with permission from Ref. [80]. Copyright 2019, Elsevier Inc. (d) Schematic diagram of the synthesis of carbon nanotubes formed vertically on carbide metal oxide nanosheet catalysts. Half-wave potentials (e) and overpotentials (f) of the catalysts. Reproduced with permission from Ref. [81]. Copyright 2019, Elsevier Inc.
Fig. 13. (a) Schematic diagram of the hollow structure, stress-induced orientation contraction mechanism and the corresponding TEM images; ORR polarization curves (b) and the jk values (c) of all catalysts at 0.8 V. Reproduced with permission from Ref. [82]. Copyright 2018, Wiley-VCH.
Fig. 14. (a) Schematic diagram of the 3D hierarchically porous carbon catalysts. Reproduced with permission from Ref. [84]. Copyright 2018, The Royal Society of Chemistry. (b) Schematic diagram of the preparation of the Fe/N/C catalyst using the molten ZnCl2/KCl eutectic salt. ORR polarization plots of the catalysts in acidic (c) and alkaline (d) electrolytes. (e) Polarization plots of the Zn-O2 batteries. Reproduced with permission from Ref. [85]. Copyright 2018, The Royal Society of Chemistry.
Fig. 15. (a) Schematic diagram of the macroporous carbon catalysts prepared using the hard template method; ORR polarization curves (b) and onset and half-wave potentials (c) of all catalysts. Reproduced with permission from Ref. [86]. Copyright 2016, American Chemical Society. (d) Schematic diagram of the FeNC materials with 3D framework structures. LS voltammograms (e) and Jk values (f) at 0.9 V and E1/2 values of different catalysts; SEM (g) and TEM (h) images of FeNC-3. N2 adsorption-desorption isotherms (i) and pore size distribution lots (j) of the FeNC catalysts. Reproduced with permission from Ref. [87]. Copyright 2020, The Royal Society of Chemistry.
|
[1] | 赵磊, 张震, 朱昭昭, 李平波, 蒋金霞, 杨婷婷, 熊佩, 安旭光, 牛晓滨, 齐学强, 陈俊松, 吴睿. 缺陷氮掺杂碳耦合Co-N5单原子位点用于高效锌-空气电池[J]. 催化学报, 2023, 51(8): 216-224. |
[2] | 周波, 石建巧, 姜一民, 肖磊, 逯宇轩, 董帆, 陈晨, 王特华, 王双印, 邹雨芹. 强化脱氢动力学实现超低电池电压和大电流密度下抗坏血酸电氧化[J]. 催化学报, 2023, 50(7): 372-380. |
[3] | 贡立圆, 王颖, 刘杰, 王显, 李阳, 侯帅, 武志坚, 金钊, 刘长鹏, 邢巍, 葛君杰. 重塑位于火山曲线右支的弱吸附金属单原子位点的配位环境及电子结构[J]. 催化学报, 2023, 50(7): 352-360. |
[4] | 耿仕鹏, 陈利明, 陈海鑫, 王毅, 丁朝斌, 蔡丹丹, 宋树芹. 揭示层状晶态CoMoO4的水裂解电催化机制: 从晶面选择到活性位点设计的理论研究[J]. 催化学报, 2023, 50(7): 334-342. |
[5] | 欧阳玲, 梁杰, 罗永嵩, 郑冬冬, 孙圣钧, 刘倩, Mohamed S. Hamdy, 孙旭平, 应斌武. 电催化合成氨的研究进展[J]. 催化学报, 2023, 50(7): 6-44. |
[6] | 刘诗瑶, 巩玉同, 杨晓, 张楠楠, 刘会斌, 梁长海, 陈霄. 具有富电子镍位点的耐酸金属间化合物CaNi2Si2催化剂用于不饱和有机酸酐/酸的水相加氢[J]. 催化学报, 2023, 50(7): 260-272. |
[7] | 张光颖, 刘旭, 张欣欣, 梁志坚, 邢耕宇, 蔡斌, 沈迪, 王蕾, 付宏刚. P修饰提高Fe-N-C的氧反应活性用于高稳定的锌-空气电池[J]. 催化学报, 2023, 49(6): 141-151. |
[8] | 李显泉, 庞纪峰, 赵于嘉, 吴鹏飞, 于文广, 颜佩芳, 苏扬, 郑明远. Cu-MFI催化剂上Cuδ+催化乙醇脱氢制乙醛[J]. 催化学报, 2023, 49(6): 91-101. |
[9] | 杜乘风, 胡尔海, 余泓, 颜清宇. 二维电催化剂的局域电子调控策略[J]. 催化学报, 2023, 48(5): 1-14. |
[10] | 李静静, 张锋伟, 詹新雨, 郭河芳, 张涵, 昝文艳, 孙振宇, 张献明. 酞菁镍分子结构的精确设计: 优化电子和空间效应用于CO2电还原[J]. 催化学报, 2023, 48(5): 117-126. |
[11] | 姜润, 乔泽龙, 许昊翔, 曹达鹏. 用于氧还原反应的Fe-N-C单原子催化剂的缺陷工程[J]. 催化学报, 2023, 48(5): 224-234. |
[12] | 詹麒尼, 帅婷玉, 徐慧民, 黄陈金, 张志杰, 李高仁. 单原子催化剂的合成及其在电化学能量转换中的应用[J]. 催化学报, 2023, 47(4): 32-66. |
[13] | 唐甜蜜, 王寅, 韩憬怡, 张巧巧, 白雪, 牛效迪, 王振旅, 管景奇. 用于氧还原反应的双原子钴-铁催化剂[J]. 催化学报, 2023, 46(3): 48-55. |
[14] | 吴则星, 高玉肖, 王子璇, 肖卫平, 王新萍, 李彬, 李镇江, 刘晓斌, 马天翼, 王磊. 表面富集的超小铂纳米颗粒耦合缺陷磷化钴用于高效的电催化水分解和柔性锌空气电池[J]. 催化学报, 2023, 46(3): 36-47. |
[15] | 张平, 陈浩, 陈林, 熊鹰, 孙子其, 杨浩宇, 付莹珂, 张亚萍, 廖婷, 李斐. 基于NiZn层状双金属氢氧化物制备高效电催化CO2还原的原子分散Ni-N-C催化剂[J]. 催化学报, 2023, 45(2): 152-161. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||