催化学报 ›› 2023, Vol. 48: 66-89.DOI: 10.1016/S1872-2067(23)64428-6

• 综述 • 上一篇    下一篇

高温热冲击制备用于催化反应的高熵合金纳米颗粒

刘炎昌a, 田新龙b, 韩业创c,*(), 陈亚楠a,*(), 胡文彬a   

  1. a天津大学材料科学与工程学院, 天津300072
    b海南大学化学工程与技术学院, 南海海洋资源利用国家重点实验室, 海南省精细化学重点实验室, 海南海口570228
    c厦门大学化学化工学院, 固体表面物理化学国家重点实验室, 中国福建能源材料科学与技术创新实验室(嘉庚创新实验室), 福建厦门361005
  • 收稿日期:2022-12-03 接受日期:2023-02-28 出版日期:2023-05-18 发布日期:2023-04-20
  • 通讯作者: * 电子信箱: yananchen@tju.edu.cn (陈亚楠), ychan93@xmu.edu.cn (韩业创).
  • 基金资助:
    国家自然科学基金(52171219);国家自然科学基金(91963113);中国博士后科学基金(2022M722646)

High-temperature shock synthesis of high-entropy-alloy nanoparticles for catalysis

Yanchang Liua, Xinlong Tianb, Ye-Chuang Hanc,*(), Yanan Chena,*(), Wenbin Hua   

  1. aSchool of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
    bState Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, Hainan, China
    cState Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, Fujian, China
  • Received:2022-12-03 Accepted:2023-02-28 Online:2023-05-18 Published:2023-04-20
  • Contact: * E-mail: yananchen@tju.edu.cn (Y. Chen), ychan93@xmu.edu.cn (Y.-C. Han).
  • About author:Ye-Chuang Han (Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen University). Dr. Ye-Chuang Han received his B.A. degree from Nanchang Hangkong University in 2015, and his M.S. degree from University of Science and Technology of China in 2018, and his Ph.D. degree from Xiamen University in 2022. Now, he is carrying out his postdoctoral research at Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) and Xiamen University under the supervision of Prof. Zhong-Qun Tian. His research interests mainly focus on the synthetic methodology under non-equilibrium high temperature.
    Yanan Chen is a Professor in School of Materials Science and Engineering, Tianjin University. He received his Bachelor's degree and joint Ph.D. degree from University of Science and Technology Beijing/University of Maryland in 2012 and 2017 respectively. He was an advanced innovative fellow at Tsinghua University before joining in Tianjin University. His research mainly focuses on nanomaterials, devices, and systems for advanced energy storage and conversion. His research interests include high-temperature shock (HTS), ultrafast nanomanufacturing, metastable high throughput synthesis, emerging energy storages Li-ion and beyond, catalysis, artificial intelligence and interdisciplinary. He has published more than 100 research papers on international famous journals, including Nat. Energy, Nat. Commun., Sci. Adv., JACS, PNAS, Adv. Mater., Mater. Today, Nano Lett., Adv. Energy Mater., ACS Nano and has been cited nearly 7000 times (including many ESI highly cited papers).
  • Supported by:
    National Natural Science Foundation of China(52171219);National Natural Science Foundation of China(91963113);China Postdoctoral Science Foundation(2022M722646)

摘要:

先进功能材料的研发与合成技术的进步密切相关, 因此合成过程中动力学和热力学参数的精准控制对于材料的制备至关重要. 传统的高温制造工艺(比如马弗炉、管式炉), 由于缓慢的升温和降温速率(0-1 K s-1), 可以视为由热力学主导的、时刻处于平衡状态的加热过程, 由此制备的产物大多具有最低的吉布斯自由能和稳定的原子排列, 属于热力学产物. 为了打破缓慢升降温速率导致的热力学限制, 以动力学为主导的、具有超快升降温速率的高温热冲击(HTS)的合成方法在近年被广泛研究. 与传统的高温制造工艺不同, HTS在瞬间通过巨大的能量驱动, 可以在秒或毫秒的时间内达到3000 K的峰值温度, 具有超快的升降温速率(≥105 K s-1), 而且, 该方法制备的产物大多只在局部范围内有极小的吉布斯自由能, 并非最稳定的状态, 是热力学不稳定的产物. 这种动力学主导的特征, 使其在新型材料(比如常规方法无法获得的高熵成分、热力学亚稳相和表面富缺陷)的探索及可控制备中展现出巨大的优势.
在HTS合成所取得的重要进展中, 高熵合金(HEAs)纳米颗粒由于具有灵活的组成空间和高熵混合结构, 在多相催化反应中展现出较好的活性、选择性以及稳定性, 从而受到越来越广泛的关注. HEAs是由5种或5种以上元素以近摩尔比的形式获得多主元合金, 由于多种组分导致的高熵效应、晶格畸变效应、缓慢扩散效应和“鸡尾酒”效应, HEAs被认为是理想的催化剂, 但是由于传统方法制备的HEAs多为尺寸较大的大块合金, 具有较低的比表面积, 这极大地限制了其在催化领域的应用.
HTS超高的冷却速率可以抑制HEAs的粗化或者相分离, 从而制备得到纳米级别的HEAs, 有效解决了上述问题.
尽管近年来有很多关于HTS和HEAs的相关研究, 都未在本质上探讨HTS的相关机理. 基于此, 本文从能量-空间-时间的角度出发, 在根本上探讨了HTS的物理化学原理, 全面介绍了具有代表性的HTS技术(焦耳加热、激光加热、微波加热)的设备及机理, 总结了HTS制备催化剂相比于传统的热力学主导的近平衡加热方法的优越性, 旨在促进新兴的HTS技术进步; 同时介绍了HEAs的概念和特点, 总结了利用HTS技术制备HEAs及其衍生物的最新进展; 最后, 对HTS和HEAs的未来研究方向做了总结与展望. 综上, 本文旨在对推进HTS和HEAs的发展、整合二者的优势做出贡献.

关键词: 高温热冲击, 焦耳加热, 激光加热, 微波加热, 高熵合金, 纳米材料, 催化反应

Abstract:

Rational design and precise fabrication of advanced functional materials are intimately linked to the technological advances in synthetic methodologies. The high-temperature shock (HTS) method, which involves an ultrafast heating/cooling rate (>105 K s-1) and features kinetics-dominated characteristics in material synthesis, exhibits high superiority in exploring and controllable preparation of novel materials that are typically unobtainable, such as high-entropy composition, thermodynamically metastable phases, and defect-rich surfaces. Among these significant advances, high-entropy alloy (HEA) nanoparticles are particularly prominent in heterogeneous catalytic reactions with remarkable activity, selectivity, and stability owing to their flexible composition space and high-entropy mixing structure. In this review, the physicochemical principles of HTS are presented, and the equipment and mechanisms of representative HTS techniques (e.g., Joule heating, laser heating, microwave heating) are comprehensively introduced, with the aim of accelerating the development of burgeoning HTS techniques. The concept and features of HEAs are also briefly introduced, and recent progress in the synthesis of HEAs using the HTS techniques is reviewed to provide a focused view on the unique advantages of HTS synthesis for HEAs and the exploration of novel materials. Finally, conclusions and perspectives are also provided for future investigations of HTS and HEAs, which have great significance in guiding their development and integrating their strengths.

Key words: High-temperature shock, Joule heating, Laser heating, Microwave heating, High-entropy alloy, Nanomaterial, Catalysis reaction