催化学报 ›› 2023, Vol. 48: 32-65.DOI: 10.1016/S1872-2067(23)64429-8
收稿日期:
2022-12-04
接受日期:
2023-02-28
出版日期:
2023-05-18
发布日期:
2023-04-20
通讯作者:
* 电子信箱: 基金资助:
Huanhuan Yanga, Shiying Lib, Qun Xua,c,*()
Received:
2022-12-04
Accepted:
2023-02-28
Online:
2023-05-18
Published:
2023-04-20
Contact:
* E-mail: About author:
Qun Xu (Henan Institute of Advanced Technology, College of Materials Science and Engineering, Zhengzhou University) is an associate editor for Energy & Environmental Materials (Wiley). Prof. Qun Xu obtained her PhD in Physical Chemistry from the Institute of Chemistry, Chinese Academy of Science in 1999. In 2001, she finished her post doctor work in Karlsruhe Nuclear Center in Germany and return back to China. In recent years, she focuses on the design, synthesis and performance exploration of novel nanostructures. She has made outstanding contribution on the utilization of supercritical CO2 for the fabrication of advanced materials, and their relevant applications in energy storage and (photo)electrocatalysis. She has published more than 150 papers in top journals in the recent 10 years as corresponding author (h-index = 55 and 10670 citations), including Angew. Chem. Int. Ed., Adv. Mater., ACS Nano, Chem. Mater., and Adv. Funct. Mater., etc. Many papers were listed by ESI as the world’s top 1% highly cited papers and top 0.1% hot papers. She is one of the World Highly Cited Researchers in 2020, and World Top 2% Scientist (Stanford University).
Supported by:
摘要:
电催化CO2还原, 可利用太阳能、风能等可再生能源产生的清洁电能驱动CO2在常温常压下绿色高效地转化为甲烷, 甲醇、乙烯和乙醇等化学品. 其中, 多碳产物(C2+产物)因能量密度大、附加值高而备受关注. Cu可以有效吸附中间体CO, 促进C-C键偶联, 是目前公认的可以有效催化CO2转化为C2+还原产物的金属, 但反应涉及多电子转移、质子耦合、路径复杂,加之水相体系中析氢副反应的影响, C2+产物选择性差.
本文以CO2还原过程中的四个关键步骤为主线, 综述了Cu基催化剂表面结构的改性策略, 以提高CO2还原制备C2+产物性能, 并深入分析了催化剂表面结构与性能之间的构效关系. (1) 抑制析氢: 通过有机层修饰及形貌调控对催化剂表面进行疏水改性, 抑制H2O传输, 同时促进CO2扩散. (2) 促进CO2吸附活化: Cu与CO2捕获材料复合, 可以有效促进CO2吸附; 卤素离子可以提供孤对电子给CO2, 形成X-C键(X = F-, Cl-, Br-, I-), 促进CO2的吸附及活化. (3) 调控CO中间体的生成及吸附性能: Cu与CO高选择性催化剂复合构建双功能串联催化剂, 可以有效提高催化剂表面CO浓度及覆盖度; 催化剂表面增强的局部热-电场效应可促进CO中间体的吸附及耦合; 线性吸附的CO和桥式吸附的CO共存, 以及低频线性吸附的CO可以有效进行耦合, 促进C2+产物生成. (4) 促进C-C耦合成键: C-C耦合是生成C2+产物最关键的一步, 限域形貌结构, 可以有效提高中间产物在催化剂表面的浓度及保留时间, 提高C-C耦合几率; 氧化物衍生铜、杂原子掺杂和有机分子修饰等可以调控催化剂表面铜物种价态, Cuδ+和Cu0协同, 可以促进CO2活化, 增强CO中间体吸附, 降低C-C耦合能垒; 空位、晶界和台阶等缺陷可以改变C1中间体在催化剂表面的吸附性能, 降低C-C耦合能垒; Cu单原子催化剂较高的原子利用率以及Cu原子与配位原子协同可有效促进C-C耦合, 调节单一C2+产物选择性; 异质界面可以改变本征电导率, 提高电荷转移速率, 调节催化剂表面电子结构, 进一步调控对中间体的吸附, 促进C-C耦合几率. 催化剂表面结构重组、化学态变化、积碳、Fe/Ni等杂质沉积和微量有机杂质吸附等会影响催化反应稳定性. 构建Cu-载体相互作用及限域结构, 引入缺陷位点、原子掺杂、有机分子修饰和纯化电解质溶液等方法可以有效缓解催化剂失活.
此外, 本文指出了CO2还原制C2+产物领域未来潜在的研究方向: (1) 开发时间及空间分辨的原位谱学技术, 结合理论计算研究催化剂的动态变化及中间体的演变过程, 揭示催化反应机理, 为实现单一C2+产物高选择性, 设计高效率及高稳定性催化剂提供理论指导; (2) 深入认识催化反应失活机理, 设计新型催化剂及反应器, 提高整个体系反应稳定性; (3) 关注阳极反应, 尝试新的氧化反应替代能耗较高的析氧反应; 设计高稳定的阳极反应催化剂; 开发化学及机械稳定的离子交换膜, 减少CO2向阳极的扩散, 提高整体反应能效及经济性等.
杨焕焕, 李诗颖, 许群. 铜基催化剂电催化高效还原CO2制备C2+产物的调控策略[J]. 催化学报, 2023, 48: 32-65.
Huanhuan Yang, Shiying Li, Qun Xu. Efficient strategies for promoting the electrochemical reduction of CO2 to C2+ products over Cu-based catalysts[J]. Chinese Journal of Catalysis, 2023, 48: 32-65.
Fig. 3. (a) HRTEM image of 1-octadecanethiol-treated Cu dendrite showing the alkanethiol layer attached to the Cu surface. (b) Contact angle measurements of Cu dendrite without (top; wettable) and with (bottom; hydrophobic) a 1-ochtadecanethiol coating. (c,d) Illustrations of the reaction mechanism of the hydrophobic dendrite showing enhanced CO2 mass transport from the triple-phase boundary between the electrolyte, electrode, and gaseous CO2 and the resultant formation of key products on the surface. (e) Product-formation FEs of the hydrophobic and wettable dendrites when passing an overall current density of -30?mA·cm-2 in 0.1 mol·L-1 CsHCO3. Reprinted with permission from Ref. [84]. Copyright 2019, Nature Publishing Group. (f) Photograph of a water droplet on a Setaria leaf and the corresponding contact angle image (inset). (g) SEM image of surface microstructures of a Setaria leaf. (h) SEM images of hierarchical Cu dendrites (Cu-D) with an apex half-angle of ~11° and the corresponding contact angle image (inset). (i) Stability test of Cu-D at a total current density of 300 mA·cm-2 in CO2-purged 1 mol·L-1 KOH. Reprinted with permission from Ref. [103]. Copyright 2021, American Chemical Society.
Catalyst | Potential (V vs. RHE) | j (mA·cm-2) | FE (%) | Reactor/ Electrolyte | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|
Ethanol | Ethylene | Acetate | Propanol | C2+ | H2 | |||||
Cu/C/PTFE a | -1.0 | 250 c | ~18 | ~24 | ~1 | ~9 | >50 | ~20 | flow cell 1 mol·L-1 KOH | [ |
Cu/C b | 138 | ~22 | ~8 | ~3 | ~4 | < 40 | >50 | |||
AEI-OD-Cu nanosheets a | — | 800 d | 18.1 | 62 | — | 0.6 | 81 | ~7 | flow cell/ 1 mol·L-1 KOH | [ |
PEI-OD-Cu nanosheets b | 18 | 46 | — | 2.5 | 66 | — | ||||
1-octadecanethiol-Cu dendrite a | — | 30 c | 17 | 56 | 1 | — | 74 | 10 | H-type cell/ 0.1 mol·L-1 CsHCO3 | [ |
Cu dendrite b | 9 | 4 | 0.4 | — | ~15 | 71 | ||||
Cu dendrite with nanoneedle tip a | -0.68 | 255 d | 23.7 | 30 | 8.5 | 1.6 | 64 | 17.5 | flow cell/ 1 mol·L-1 KOH | [ |
Cu particles b | ~60 | 4.3 | 13.1 | 6.8 | 1.1 | 25.3 | 27.5 | |||
Cu nanorod/porous organic cages a | -0.9 | 1700 c | 29.5 | 27.1 | — | 13.4 | 76.1 | ~8 | flow cell 1 mol·L-1 KOH | [ |
Cu nanorod b | ~270 | ~20 | ~30 | — | <10 | 64.5 | ~20 |
Table 1 CO2RR-to-C2+ performances over Cu-based catalysts modified with surface hydrophobization.
Catalyst | Potential (V vs. RHE) | j (mA·cm-2) | FE (%) | Reactor/ Electrolyte | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|
Ethanol | Ethylene | Acetate | Propanol | C2+ | H2 | |||||
Cu/C/PTFE a | -1.0 | 250 c | ~18 | ~24 | ~1 | ~9 | >50 | ~20 | flow cell 1 mol·L-1 KOH | [ |
Cu/C b | 138 | ~22 | ~8 | ~3 | ~4 | < 40 | >50 | |||
AEI-OD-Cu nanosheets a | — | 800 d | 18.1 | 62 | — | 0.6 | 81 | ~7 | flow cell/ 1 mol·L-1 KOH | [ |
PEI-OD-Cu nanosheets b | 18 | 46 | — | 2.5 | 66 | — | ||||
1-octadecanethiol-Cu dendrite a | — | 30 c | 17 | 56 | 1 | — | 74 | 10 | H-type cell/ 0.1 mol·L-1 CsHCO3 | [ |
Cu dendrite b | 9 | 4 | 0.4 | — | ~15 | 71 | ||||
Cu dendrite with nanoneedle tip a | -0.68 | 255 d | 23.7 | 30 | 8.5 | 1.6 | 64 | 17.5 | flow cell/ 1 mol·L-1 KOH | [ |
Cu particles b | ~60 | 4.3 | 13.1 | 6.8 | 1.1 | 25.3 | 27.5 | |||
Cu nanorod/porous organic cages a | -0.9 | 1700 c | 29.5 | 27.1 | — | 13.4 | 76.1 | ~8 | flow cell 1 mol·L-1 KOH | [ |
Cu nanorod b | ~270 | ~20 | ~30 | — | <10 | 64.5 | ~20 |
Fig. 4. (a) CO2 desorption curves of CuO/Cu-MOF and commercial CuO [CuO (coml)]. Reprinted with permission from Ref. [10]. Copyright 2022, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Elsevier B.V. (b) Schematic illustration of the process of specific adsorption of halide ions, adsorption of CO2, and subsequent electrochemical reduction. Reprinted with permission from Ref. [117] Copyright 2022, The Royal Society of Chemistry. (c) Free energy profiles (at U = -0.9 V vs. SHE) for CO2 activation on a metallic matrix (blue), fully oxidized matrix (red), and metal embedded in an oxidized matrix (green). Reprinted with permission from Ref. [118]. Copyright 2017, PNAS.
Fig. 5. (a) FEs of C2+ products obtained for various catalysts: Ag nanocubes (NCs), Ag65-Cu35 JNS-100, Ag50-Cu50 JNS-100, Ag25-Cu75 JNS-100, Ag+Cu mixture, and Cu NCs at -1.2 V vs. RHE. (b) C2+/C1 product ratios for Ag65-Cu35 JNS-100, Ag+Cu mixture, and Cu NCs. Reprinted with permission from Ref. [136]. Copyright 2022, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. (c) CO and C2 FE values for Cu@Ag NPs at -1.1 V vs. RHE. Reprinted with permission from Ref. [138]. Copyright 2021, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. FEs (d) and partial current density (e) of CO, C2H4, and C2+ products at -0.72 ± 0.10 V vs. RHE over a bare Cu1.0 electrode, Cu1.0-ZnO0.20 mixed electrode, and Cu1.0/ZnO0.20 tandem electrode. Reprinted with permission from Ref. [132]. Copyright 2020, Elsevier Inc. (f) C2H4 and CH4 FE values as a function of potential measured over PTF(Ni)/Cu and PTF/Cu catalysts. Reprinted with permission from Ref. [146]. Copyright 2021, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. (g) Common structures of bifunctional catalysts and a schematic illustration of a possible CO2RR-to-C2+ mechanism.
Fig. 6. (a) HAADF-STEM image of Cu nanoneedles (Cu NN) with a PTFE coverage rate of 99% (Cu-PTFE-99NN). (b) Electric-field enhancement factor and concentration of adsorbed K+ ions on the surface of electrodes at a potential of -1.5 V vs. RHE. (c) Infrared thermal images of the electrodes (top) and corresponding thermal field magnitude (bottom) at a constant applied current. (d) Schematic illustration of the synergetic effect of the tip-induced electric-thermal field on promoting C2 formation. (e) Stretching band areas of atop-bound COL in the 1950-2150 cm-1 range from in-situ ATR-IR spectra as a function of the applied potential. (f) FE of C2 products over Cu-PTFE-99NN as a function of the current density in a flow cell. Reprinted with permission from Ref. [77]. Copyright 2022, American Chemical Society.
Fig. 7. (a) Relationship between FEC2H4 and the ratio of COatop to CObridge. (b) Energy barriers of dimerization of two bridge-site CO and two CO at bridge and atop sites. (c) FEC2H4 on Cu and N,N?-(1,4-phenylene)bispyridinium-derived oligomer modified Cu (Cu-12) in 1 mol·L-1 KHCO3. Reprinted with permission from Ref. [160]. Copyright 2020, Nature Publishing Group. (d) SEIRAS spectra used to analyze the potential dependence of the C≡O stretch band of COatop on Cu-Si and CuAu-Si. (e) Differential electrochemical mass spectrometry spectra for Cu-Si and CuAu-Si in contact with CO-saturated 0.1 mol·L-1 potassium phosphate buffer at pH 7. Reprinted with permission from Ref. [162]. Copyright 2020, American Chemical Society. (f) Raman spectra of anodized Cu-MP (mechanically polished polycrystalline Cu) during reduction at -0.7, -0.8, and -0.9 V vs. RHE. (g) FEs of different products over anodized Cu-MP during CO2RR at -0.7, -0.8, and -0.9 V vs. RHE. Reprinted with permission from Ref. [66]. Copyright 2021, The Authors.
Catalyst | Potential (V vs. RHE) | j (mA·cm-2) | FE (%) | Reactor/electrolyte | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
Ethanol | Ethylene | Acetate | Propanol | C2+ | |||||
AgI-CuO a | -1.0 | 18.2 d | 19.7 | 49.2 | — | — | 68.9 | H-type cell/ 0.25 mol·L-1 KHCO3 | [ |
CuO nanosheets b | -0.95 | — | ~4 | ~21 | — | — | 24.8 | ||
CuAu a | -1.05 | 30 d | 23 | 39 | — | — | 70 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ |
Cu nanowires b | 15 | 13-16 | 30-33 | — | — | 55 | |||
Pd-Cu decahedra a | -1.0 | 30 c | 11.6 | 34 | 0.6 | 4.8 | 51 | H-type cell/ 0.5 mol·L-1 KHCO3 | [ |
Cu twinned nanoparticles b | ~37 | — | — | — | — | 37.6 | |||
Cu/ZnO a | -0.73 | 466 d | ~20 | 49 | — | — | 78 | flow cell/ 1 mol·L-1 KOH | [ |
Cu nanoparticles b | 137 | ~20 | ~40 | — | — | 65 | |||
PTF(Ni)/Cu a | -1.1 | 5.5 c | — | 57.3 | — | — | 57.3 | H-type cell/ 0.1 mol·L-1 KHCO3+KCl | [ |
PTF/Cu b | 2 | — | 9.6 | — | — | 9.6 | |||
Cu-PTFE nanoneedle a | -1.5 | 54 d | 42.3 | 43.1 | — | — | 85.4 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ |
Cu nanoneedle b | 35 | 19 | 24 | — | — | 43 | |||
Cu-12 a | -0.83 | ~320 c | 10.5 | 71.5 | 1.5 | 2.1 | 85.6 | flow cell/ 1 mol·L-1 KHCO3 | [ |
Cu b | -0.84 | ~364 | 15.5 | 43.9 | 1.2 | 3.9 | 64.5 |
Table 2 CO2RR-to-C2+ performance over Cu-based catalysts via modulating CO generation and adsorption.
Catalyst | Potential (V vs. RHE) | j (mA·cm-2) | FE (%) | Reactor/electrolyte | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
Ethanol | Ethylene | Acetate | Propanol | C2+ | |||||
AgI-CuO a | -1.0 | 18.2 d | 19.7 | 49.2 | — | — | 68.9 | H-type cell/ 0.25 mol·L-1 KHCO3 | [ |
CuO nanosheets b | -0.95 | — | ~4 | ~21 | — | — | 24.8 | ||
CuAu a | -1.05 | 30 d | 23 | 39 | — | — | 70 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ |
Cu nanowires b | 15 | 13-16 | 30-33 | — | — | 55 | |||
Pd-Cu decahedra a | -1.0 | 30 c | 11.6 | 34 | 0.6 | 4.8 | 51 | H-type cell/ 0.5 mol·L-1 KHCO3 | [ |
Cu twinned nanoparticles b | ~37 | — | — | — | — | 37.6 | |||
Cu/ZnO a | -0.73 | 466 d | ~20 | 49 | — | — | 78 | flow cell/ 1 mol·L-1 KOH | [ |
Cu nanoparticles b | 137 | ~20 | ~40 | — | — | 65 | |||
PTF(Ni)/Cu a | -1.1 | 5.5 c | — | 57.3 | — | — | 57.3 | H-type cell/ 0.1 mol·L-1 KHCO3+KCl | [ |
PTF/Cu b | 2 | — | 9.6 | — | — | 9.6 | |||
Cu-PTFE nanoneedle a | -1.5 | 54 d | 42.3 | 43.1 | — | — | 85.4 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ |
Cu nanoneedle b | 35 | 19 | 24 | — | — | 43 | |||
Cu-12 a | -0.83 | ~320 c | 10.5 | 71.5 | 1.5 | 2.1 | 85.6 | flow cell/ 1 mol·L-1 KHCO3 | [ |
Cu b | -0.84 | ~364 | 15.5 | 43.9 | 1.2 | 3.9 | 64.5 |
Fig. 8. (a) FE for CO2RR products on Cu nanowire arrays with different lengths at -1.1 V vs. RHE in CO2-saturated 0.1 mol·L-1 KHCO3 (0 μm nanowire is a Cu foil). Reprinted with permission from Ref. [44]. Copyright 2016, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. Computed concentration and distribution of CO2 species (b) C1 (c), C2 (d), and C3 (e) on a multi-hollow structure (color scales in mol·L-1). FE (f) and partial current density values (g) of C2+ and C1 on catalysts at different potentials. Reprinted with permission from Ref. [183]. Copyright 2020, American Chemical Society. CO2RR product distributions (h) and C2+ partial current density (i) over catalysts with 1-3 shell at different potentials. Reprinted with permission from Ref. [184]. Copyright 2022, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. (j) Schematic illustration of the confinement effect over confinement structures that promotes intermediate concentration and further conversion to C2+ products.
Catalyst | Potential (V vs. RHE) | j (mA·cm-2) | FE (%) | Reactor / Electrolyte | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|
Ethanol | Ethylene | Acetate | Propanol | C2+ | ||||||
Confinement structures | Cu nanowires a | -1.1 | 4 c | 3.8 | 17.4 | — | 7.8 | 30 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ |
Polycrystalline Cu b | 1.5 | — | 2 | — | — | 2 | ||||
Reduced Cu-I with hierarchical pores a | -1.09 | 21d | ~17 | 59.9 | — | — | 80 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ | |
Electropolished polycrystalline Cu b | — | — | ~22 | — | — | < 25 | ||||
Multihole Cu2O a | -0.61 | 267 d | 26 | 37 | 4 | 6.2 | 75.2 | flow cell/ 2 mol·L-1 KOH | [ | |
Solid Cu2O b | 25 | ~12 | ~21 | ~2 | — | ~35 | ||||
Cu/hollow mesoporous carbon spheres a | -1.0 | ~270 c | 20.1 | 68.6 | — | — | 88.7 | flow cell/ 1 mol·L-1 KOH | [ | |
Valence state modulation | Oxygen-bearing Cu a | -0.95 | 44.7 d | — | 45 | — | — | 45 | H-type cell/ 0.5 mol·L-1 KHCO3 | [ |
Oxygen-free Cu b | ~2 | — | ~2 | — | — | ~2 | ||||
e-CuOHFCl nanosheets a | -1.0 | 15 d | 14.0 | 34.1 | 0.6 | 5.1 | 53.8 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ | |
Cu(OH)2 nanosheets b | — | — | 22.7 | — | — | > 20 | ||||
S-HKUST-1 a | — | 400 c | 27 | 57.2 | 4.2 | — | 88.4 | flow cell/ 1 mol·L-1 KOH | [ | |
HKUST-1 (Cu-MOF) b | 21.2 | 35.2 | 6.4 | — | 62.8 | |||||
Bare Cu b | 23.2 | 30.2 | 5.9 | — | 59.3 | |||||
Ionic liquid@Cu a | -1.49 | 34.2 c | — | 77.3 | — | — | 77.3 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ | |
Pure Cu b | 19.7 | — | 31.2 | — | — | 31.2 | ||||
Defects | Heat-quenched Cu a | -1.05 | 45 d | ~11 | ~35 | ~1 | ~2 | 68.2 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ |
Anodized Cu a | 35 | ~10 | ~29 | ~2 | ~3 | 62.3 | ||||
Electropolished Cu b | 0.7 | — | ~1 | — | — | < 10 | ||||
Bi-CuO(VO) a | -1.05 | 9 d | — | 48.2 | — | — | 48.2 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ | |
Pure CuO b | 5 | — | 24 | — | — | 24 | ||||
Cu(OH)2-D/Cu foil a | -0.54 | 217 d | 22 | 58 | — | 7 | 87 | flow cell/1 mol·L-1 KOH | [ | |
Monatomic Cu | Cu/C a | -0.7 | 1.23 c | 91 | — | — | — | >90 | 0.1 mol·L-1 KHCO3 e | [ |
PcCu-TFPN (COF) a | -0.8 | 12.5 c | — | — | 90.3 | — | 90.3 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ | |
PcCu-Cu-O b | -1.2 | — | — | ~50 | — | — | ~50 | |||
Heterojunction | 34% N-C/Cu a | — | 300 c | 52.3 | 37.5 | 2.3 | 1.4 | 93.5 | flow cell/ 1 mol·L-1 KOH | [ |
Cu b | 31.4 | 48.2 | 2.3 | 2.6 | 84.5 | |||||
Cu/ZrO2 a | -1.05 | 24.4 c | ~30 | ~43 | ~10 | — | 84.4 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ | |
Cu foil b | 10 | ~6 | ~17 | — | — | 22.7 |
Table 3 CO2RR-to-C2+ performances for Cu-based catalysts modified with different strategies for promoting C-C coupling.
Catalyst | Potential (V vs. RHE) | j (mA·cm-2) | FE (%) | Reactor / Electrolyte | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|
Ethanol | Ethylene | Acetate | Propanol | C2+ | ||||||
Confinement structures | Cu nanowires a | -1.1 | 4 c | 3.8 | 17.4 | — | 7.8 | 30 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ |
Polycrystalline Cu b | 1.5 | — | 2 | — | — | 2 | ||||
Reduced Cu-I with hierarchical pores a | -1.09 | 21d | ~17 | 59.9 | — | — | 80 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ | |
Electropolished polycrystalline Cu b | — | — | ~22 | — | — | < 25 | ||||
Multihole Cu2O a | -0.61 | 267 d | 26 | 37 | 4 | 6.2 | 75.2 | flow cell/ 2 mol·L-1 KOH | [ | |
Solid Cu2O b | 25 | ~12 | ~21 | ~2 | — | ~35 | ||||
Cu/hollow mesoporous carbon spheres a | -1.0 | ~270 c | 20.1 | 68.6 | — | — | 88.7 | flow cell/ 1 mol·L-1 KOH | [ | |
Valence state modulation | Oxygen-bearing Cu a | -0.95 | 44.7 d | — | 45 | — | — | 45 | H-type cell/ 0.5 mol·L-1 KHCO3 | [ |
Oxygen-free Cu b | ~2 | — | ~2 | — | — | ~2 | ||||
e-CuOHFCl nanosheets a | -1.0 | 15 d | 14.0 | 34.1 | 0.6 | 5.1 | 53.8 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ | |
Cu(OH)2 nanosheets b | — | — | 22.7 | — | — | > 20 | ||||
S-HKUST-1 a | — | 400 c | 27 | 57.2 | 4.2 | — | 88.4 | flow cell/ 1 mol·L-1 KOH | [ | |
HKUST-1 (Cu-MOF) b | 21.2 | 35.2 | 6.4 | — | 62.8 | |||||
Bare Cu b | 23.2 | 30.2 | 5.9 | — | 59.3 | |||||
Ionic liquid@Cu a | -1.49 | 34.2 c | — | 77.3 | — | — | 77.3 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ | |
Pure Cu b | 19.7 | — | 31.2 | — | — | 31.2 | ||||
Defects | Heat-quenched Cu a | -1.05 | 45 d | ~11 | ~35 | ~1 | ~2 | 68.2 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ |
Anodized Cu a | 35 | ~10 | ~29 | ~2 | ~3 | 62.3 | ||||
Electropolished Cu b | 0.7 | — | ~1 | — | — | < 10 | ||||
Bi-CuO(VO) a | -1.05 | 9 d | — | 48.2 | — | — | 48.2 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ | |
Pure CuO b | 5 | — | 24 | — | — | 24 | ||||
Cu(OH)2-D/Cu foil a | -0.54 | 217 d | 22 | 58 | — | 7 | 87 | flow cell/1 mol·L-1 KOH | [ | |
Monatomic Cu | Cu/C a | -0.7 | 1.23 c | 91 | — | — | — | >90 | 0.1 mol·L-1 KHCO3 e | [ |
PcCu-TFPN (COF) a | -0.8 | 12.5 c | — | — | 90.3 | — | 90.3 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ | |
PcCu-Cu-O b | -1.2 | — | — | ~50 | — | — | ~50 | |||
Heterojunction | 34% N-C/Cu a | — | 300 c | 52.3 | 37.5 | 2.3 | 1.4 | 93.5 | flow cell/ 1 mol·L-1 KOH | [ |
Cu b | 31.4 | 48.2 | 2.3 | 2.6 | 84.5 | |||||
Cu/ZrO2 a | -1.05 | 24.4 c | ~30 | ~43 | ~10 | — | 84.4 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ | |
Cu foil b | 10 | ~6 | ~17 | — | — | 22.7 |
Fig. 9. (a) In-situ ATR-IR of 20% Cu/CuSiO3 at different potentials. (b) FE test of 20% Cu/CuSiO3. (c) Calculated formation energy of *COCOH and adsorption energy of *CO on Cu0, Cu+ and Cu0-Cu+ sites. Reprinted with permission from Ref. [158]. Copyright 2021, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. FE (d) and partial current density (e) of C2+ over Cu-CuI, Cu-Cu2O, and Cu2O electrodes. (f) TEM and HRTEM images of Cu-CuI catalyst pretreated with 1 mol·L-1 KOH with a Cu0/Cu+ interface. (g) Adsorption energy and adsorption configurations of *CO on model catalysts. Reprinted with permission from Ref. [197]. Copyright 2021, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. (h) DFT-calculated CO adsorption energy (Ead) increases with increasing partial positive oxidation state of Cu. (i) DFT-calculated CO=CO dimerization energy as a function of the average adsorption energy of two adsorbed CO molecules. 1[B], 2[B], 3[B], 4[B] and 8[B] refer to boron-doped copper catalysts with subsurface boron concentrations of 1/16, 1/8, 3/16, 1/4 and 1/2 monolayers, respectively. (j) FEs of C2 and C1 at different copper oxidation states on Cu(B) at -1.1 V vs. RHE. Cu(B)-1, Cu(B)-2, Cu(B)-3, Cu(B)-4 and Cu(B)-5 refer to experimental Cu(B) catalysts with B/Cu(%) of 1.3, 1.7, 1.9, 2.0, 2.2. Reprinted with permission from Ref. [198]. Copyright 2018, Nature Publishing Group. (k) C2+ FE as a function of the specific current density over a N2SN functionalized electrode. (l) C2+ and H2 FE values measured at -1.2 V vs. RHE as a function of the Cu oxidation state. (m) Relationship between the C2+ FE and COatop/CObridge ratio for modified electrodes. P, N2SN, N3N, C2N and C3 refer to pristine, 5-Amino-1,3,4-thiadiazole-2-thiol, 3-amino-1,2,4-triazole-5-thiol, cysteamine and 1-propanethiol functionalized Ag-Cu samples, respectively. Reprinted with permission from Ref. [199]. Copyright 2021, Nature Publishing Group.
Fig. 10. (a) Calculated energy diagrams for CuSx-SSV (single sulfur vacancy) and CuSx-DSV (double sulfur vacancy) at 0 V vs. RHE. (b) HAADF-STEM image of CuSx-DSV and (c) corresponding intensity profile measured along the blue line in (b). The pink and yellow spheres, and yellow dashed circles indicate copper, sulfur atoms, and sulfur vacancies, respectively. (d) CO2RR product distribution using CuSx-DSV catalysts in H-cells. Reprinted with permission from Ref. [52]. Copyright 2021, Nature Publishing Group. (e) Aberration-corrected HAADF-TEM images of Cu(OH)2-D. (f) Activation energy barrier of CO dimerization. (g) C2+ partial current density and FE of Cu(OH)2-D evaluated in a flow cell with 1 mol·L-1 KOH. Reprinted with permission from Ref. [37]. Copyright 2021, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.
Fig. 11. (a) Two possible processes (I: with intramolecular protons; II: with exogenous protons) for the hydrogenation of *CO to *CHO on CuBtz during CO2RR. (b) Gibbs free-energy barriers of the elementary steps during the CO2RR pathway. FEs of CuBtz measured using an H-type cell with 0.1 mol·L-1 KHCO3 electrolyte (c) and a flow cell with 1 mol·L-1 KOH electrolyte (d). Reprinted with permission from Ref. [235]. Copyright 2022, American Chemical Society. (e) Mechanisms of the CO2RR to produce CH3COOH, C2H4, and C2H5OH. (f) Electron densities and optimized structures of *CO intermediates for CuSAC, Cu-porphyrin, and PcCu-TFPN. (g) Free energy diagrams of *CH3 and *OOCCH3 for Cu-porphyrin and PcCu-TFPN. Insets show the electron densities of *CH3 intermediates. (h) FEs of CO2RR products over PcCu-TFPN under different potentials. Reprinted with permission from Ref. [50]. Copyright 2022, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.
|
[1] | 孔艳, 蒋兴星, 李轩, 孙建桔, 胡琪, 柴晓燕, 杨恒攀, 何传新. 超高质量活性的碳纳米纤维包覆铋纳米颗粒用于高效二氧化碳电还原制甲酸[J]. 催化学报, 2023, 45(2): 95-106. |
[2] | 卞磊, 张紫阳, 田昊, 田娜娜, 马智, 王中利. 具有丰富晶界的铜催化剂在气-液平衡扩散电极上高效电还原CO2制C2H4[J]. 催化学报, 2023, 54(11): 199-211. |
[3] | Ernest Pahuyo Delmo, 王忆安, 王菁, 朱尚乾, 李铁怀, 秦雪苹, 田一博, 赵青蓝, Juhee Jang, 王一诺, 谷猛, 张莉莉, 邵敏华. 金属有机框架-离子液体混合催化剂用于电化学还原二氧化碳生成甲烷[J]. 催化学报, 2022, 43(7): 1687-1696. |
[4] | Karen Cristina Bedin, Beatriz Mouriño, Ingrid Rodríguez-Gutiérrez, João Batista Souza Junior, Gabriel Trindade dos Santos, Jefferson Bettini, Carlos Alberto Rodrigues Costa, Lionel Vayssieres, Flavio Leandro Souza. 基于溶液化学策略构建背接触FTO/赤铁矿光阳极界面工程的高效光催化水氧化研究[J]. 催化学报, 2022, 43(5): 1247-1257. |
[5] | 李宏, 蒋昆, 邹受忠, 蔡文斌. CO2电还原反应中的基础问题及原位振动光谱的对策[J]. 催化学报, 2022, 43(11): 2772-2791. |
[6] | 胡俊, 李洋洋, 郑燕萍, 陈明树, 万惠霖. 负载型Cu/Al2O3和Cu/ZnO催化剂上CO2加氢的原位FTIR及准原位XPS/HS-LEIS研究[J]. 催化学报, 2021, 42(3): 367-375. |
[7] | 蒋登辉, 张跃钢, 李鑫恒. CuO和Au纳米结构协同增强Cu2O立方体光催化活性和稳定性[J]. 催化学报, 2019, 40(1): 105-113. |
[8] | 石志彪, 杨海艳, 高鹏, 陈新庆, 刘洪江, 钟良枢, 王慧, 魏伟, 孙予罕. 碱金属助剂对CoCu/TiO2催化剂上二氧化碳加氢合成长链烃的影响[J]. 催化学报, 2018, 39(8): 1294-1302. |
[9] | 杨刚, 余志鹏, 张杰, 梁振兴. 高效二氧化碳电催化还原反应花状钴催化剂的制备及性能[J]. 催化学报, 2018, 39(5): 914-919. |
[10] | 方亚蓉, 郭彦炳. 铜基非贵金属异相催化剂在环境修复中的应用[J]. 催化学报, 2018, 39(4): 566-582. |
[11] | 王成名, 柏嵩, 熊宇杰. 电催化剂设计中表面和界面工程的最新进展[J]. 催化学报, 2015, 36(9): 1476-1493. |
[12] | 冯看卡, 李晨威, 郭杨龙, 詹望成, 马斌全, 陈斌武, 袁茂全, 卢冠忠. KCl对Cu-K-La/γ-Al2O3催化剂上HCl氧化反应性能的影响[J]. 催化学报, 2014, 35(8): 1359-1363. |
[13] | 董林, 姚小江, 陈懿. 负载型铜基催化剂组分间相互作用及其催化性能[J]. 催化学报, 2013, 34(5): 851-864. |
[14] | 余强, 高飞, 董林. 铜基催化剂用于一氧化碳催化消除研究进展[J]. 催化学报, 2012, 33(8): 1245-1256. |
[15] | 赵兰兰, 陈吉祥. P 对 Cu/Al2O3 催化剂结构及其催化甘油氢解反应性能的影响[J]. 催化学报, 2012, 33(8): 1410-1416. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||