催化学报 ›› 2023, Vol. 48: 1-14.DOI: 10.1016/S1872-2067(23)64423-7

• 述评 •    下一篇

二维电催化剂的局域电子调控策略

杜乘风a, 胡尔海b,c, 余泓a,*(), 颜清宇b,c,*()   

  1. a西北工业大学, 先进润滑与密封材料中心, 凝固技术国家重点实验室, 陕西西安710072, 中国
    b南洋理工大学能源研究所, 新加坡
    c南洋理工大学材料科学与工程学院, 新加坡
  • 收稿日期:2022-12-29 接受日期:2023-03-01 出版日期:2023-05-18 发布日期:2023-04-20
  • 通讯作者: * 电子信箱: yh@nwpu.edu.cn (余泓),alexyan@ntu.edu.sg (颜清宇).
  • 基金资助:
    国家自然科学基金(51901189);国家自然科学基金(52272091);陕西省重点研发计划(2021KWZ-17)

Strategies for local electronic structure engineering of two-dimensional electrocatalysts

Cheng-Feng Dua, Erhai Hub,c, Hong Yua,*(), Qingyu Yanb,c,*()   

  1. aState Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi’an 710072, Shaanxi, China
    bEnergy Research Institute, Nanyang Technological University, Singapore 637141, Singapore
    cSchool of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
  • Received:2022-12-29 Accepted:2023-03-01 Online:2023-05-18 Published:2023-04-20
  • Contact: * E-mail: yh@nwpu.edu.cn (H. Yu), alexyan@ntu.edu.sg (Q. Yan).
  • About author:Hong Yu (Northwestern Polytechnical University) is currently an associate professor in the School of Materials Science and Engineering at Northwestern Polytechnical University, China. She received her B.S. and Ph.D. degrees in materials science and engineering from Nanyang Technological University (Singapore) in 2011 and 2016, respectively. She continued her research as a postdoctoral research fellow in Nanyang Technological University prior to joining Northwestern Polytechnical University in 2017. Her research focuses on the design and synthesis of advanced functional materials for energy conversion and storage.
    Qingyu Yan (Nanyang Technology University) is currently a professor in School of Materials Science and Engineering in Nanyang Technology University, Singapore. He obtained his BS in Materials Science and Engineering, Nanjing University (China). He finished his Ph.D. from Materials Science and Engineering Department of State University of New York at Stony Brook. After that, He joined the Materials Science and Engineering Department of Rensselaer Polytechnic Institute as a postdoctoral research associate. He joined School of Materials Science and Engineering of Nanyang Technology University as an assistant professor in early 2008 and became a full Professor in 2018. He is currently the Chair of the Electrochemical Society, Singapore Section. He is a fellow of Royal Society of Chemistry Since 2018. He has published more than 300 papers on the research area of energy conversion and storage.
  • Supported by:
    National Natural Science Foundation of China(51901189);National Natural Science Foundation of China(52272091);Shaanxi Provincial Key R&D Program(2021KWZ-17)

摘要:

现代社会对能源的需求日益增长, 资源和环境问题凸显, 因此, 近几十年可再生能源(太阳能、风能、潮汐能等)的利用受到广泛关注. 电催化作为一种常温常压下即可实现的能量和物质转换技术, 与传统工业技术相比具有更高的能量利用效率. 更重要的是, 得益于可控的电子转移步骤和相应的中间介质, 电催化过程还表现出比传统路线更高的选择性、不受能源间歇性影响等优点, 因此特别适合可再生能源领域乃至工业生产的应用.
在电催化过程中, 催化剂和吸附物之间的相互作用(如结合、静电吸引和斥力)起着至关重要的作用, 而这种相互作用受分子电性、荷电量、吸附物构型甚至吸附物的取向等因素影响. 从更深层次上讲, 电催化剂的局域电子结构影响了其自由电子的分布、转移和流动, 并极大地影响着催化剂和吸附物之间的相互作用, 从而影响催化性能. 而对具有大比表面积、高表面原子占比的二维电催化剂材料而言, 其基平面原子通常为热力学稳定状态, 催化活性不高. 因此, 亟待通过局域电子结构的调控进一步提升其电催化性能.
目前, 针对二维材料在能源转换与存储方面的应用已经有了许多优秀的综述, 但多关注于材料体系或者催化性能, 对催化剂局域电子结构变化及其电催化性能的构效关系这一关键问题探讨尚不深入. 因此, 本文聚焦于二维电催化剂设计构筑过程中局域电子结构的调控策略, 以课题组开展的几个电催化前沿方向为例, 讨论了几种调控策略对催化剂局域电子结构的影响机制. 本课题组基于非贵金属基二维材料电催化剂的设计合成及性能调控, 针对析氢反应、析氧反应、氮还原反应、氮氧化反应以及二氧化碳还原反应开展了系列研究. 研究工作的核心思想之一是选择性地“激活”二维电催化剂基平面原子, 以实现在其高表面暴露原子的基础上增加催化活性位点数量. 本述评在已有工作的基础上对二维电催化剂的局域电子调控及其电催化性能构效关系进行了全面总结. 在单个原子尺度上, 通过杂原子掺杂、单原子负载和空位等手段有效改变催化活性位点周边键合环境, 进而实现对二维材料催化活性位点附近局域电子结构的调控. 通过在二维材料表面构筑异质结构改变界面电子结构, 不仅可以实现第二相或二维基体自身的催化活性增强, 还可以获得二者的催化协同效应. 通过对二维材料晶格进行变形, 引入外加应力, 也可以显著改变材料的电子结构, 进而影响表面原子的催化活性. 基于上述策略, 本文深入阐述了局域电子结构变化对二维材料电催化活性的影响机制. 综上, 本文为二维电催化剂的综合优化设计提供了新思路.

关键词: 二维材料, 电催化, 电子结构, 活性位点, 异质结构

Abstract:

Electrocatalytic processes have garnered increased attention for energy conversion and mass production because of their high efficiency and selectivity. In particular, electrocatalysts play a critical role in catalytic performance. Two-dimensional (2D) materials, which feature a large surface area with abundant active sites and tunable physicochemical properties, have been regarded as one of the most important candidates for future electrocatalysis. However, further research efforts are required to specifically optimize their catalytic performance to realize their commercialization. In this account, strategies for regulating the local electronic structures of 2D electrocatalysts, including heteroatom doping, single-atom loading, heterojunction formation, vacancy engineering, and strain engineering, are briefly summarized. Furthermore, the relationship between these strategies and the electrocatalytic performance of the developed materials is discussed. Finally, an outlook of the 2D electrocatalysts is provided.

Key words: Two-dimensional material, Electrocatalysis, Electronic structure, Active site, Heterogeneous