催化学报 ›› 2023, Vol. 48: 1-14.DOI: 10.1016/S1872-2067(23)64423-7
• 述评 • 下一篇
杜乘风a, 胡尔海b,c, 余泓a,*(), 颜清宇b,c,*(
)
收稿日期:
2022-12-29
接受日期:
2023-03-01
出版日期:
2023-05-18
发布日期:
2023-04-20
通讯作者:
* 电子信箱: 基金资助:
Cheng-Feng Dua, Erhai Hub,c, Hong Yua,*(), Qingyu Yanb,c,*(
)
Received:
2022-12-29
Accepted:
2023-03-01
Online:
2023-05-18
Published:
2023-04-20
Contact:
* E-mail: About author:
Hong Yu (Northwestern Polytechnical University) is currently an associate professor in the School of Materials Science and Engineering at Northwestern Polytechnical University, China. She received her B.S. and Ph.D. degrees in materials science and engineering from Nanyang Technological University (Singapore) in 2011 and 2016, respectively. She continued her research as a postdoctoral research fellow in Nanyang Technological University prior to joining Northwestern Polytechnical University in 2017. Her research focuses on the design and synthesis of advanced functional materials for energy conversion and storage.Supported by:
摘要:
现代社会对能源的需求日益增长, 资源和环境问题凸显, 因此, 近几十年可再生能源(太阳能、风能、潮汐能等)的利用受到广泛关注. 电催化作为一种常温常压下即可实现的能量和物质转换技术, 与传统工业技术相比具有更高的能量利用效率. 更重要的是, 得益于可控的电子转移步骤和相应的中间介质, 电催化过程还表现出比传统路线更高的选择性、不受能源间歇性影响等优点, 因此特别适合可再生能源领域乃至工业生产的应用.
在电催化过程中, 催化剂和吸附物之间的相互作用(如结合、静电吸引和斥力)起着至关重要的作用, 而这种相互作用受分子电性、荷电量、吸附物构型甚至吸附物的取向等因素影响. 从更深层次上讲, 电催化剂的局域电子结构影响了其自由电子的分布、转移和流动, 并极大地影响着催化剂和吸附物之间的相互作用, 从而影响催化性能. 而对具有大比表面积、高表面原子占比的二维电催化剂材料而言, 其基平面原子通常为热力学稳定状态, 催化活性不高. 因此, 亟待通过局域电子结构的调控进一步提升其电催化性能.
目前, 针对二维材料在能源转换与存储方面的应用已经有了许多优秀的综述, 但多关注于材料体系或者催化性能, 对催化剂局域电子结构变化及其电催化性能的构效关系这一关键问题探讨尚不深入. 因此, 本文聚焦于二维电催化剂设计构筑过程中局域电子结构的调控策略, 以课题组开展的几个电催化前沿方向为例, 讨论了几种调控策略对催化剂局域电子结构的影响机制. 本课题组基于非贵金属基二维材料电催化剂的设计合成及性能调控, 针对析氢反应、析氧反应、氮还原反应、氮氧化反应以及二氧化碳还原反应开展了系列研究. 研究工作的核心思想之一是选择性地“激活”二维电催化剂基平面原子, 以实现在其高表面暴露原子的基础上增加催化活性位点数量. 本述评在已有工作的基础上对二维电催化剂的局域电子调控及其电催化性能构效关系进行了全面总结. 在单个原子尺度上, 通过杂原子掺杂、单原子负载和空位等手段有效改变催化活性位点周边键合环境, 进而实现对二维材料催化活性位点附近局域电子结构的调控. 通过在二维材料表面构筑异质结构改变界面电子结构, 不仅可以实现第二相或二维基体自身的催化活性增强, 还可以获得二者的催化协同效应. 通过对二维材料晶格进行变形, 引入外加应力, 也可以显著改变材料的电子结构, 进而影响表面原子的催化活性. 基于上述策略, 本文深入阐述了局域电子结构变化对二维材料电催化活性的影响机制. 综上, 本文为二维电催化剂的综合优化设计提供了新思路.
杜乘风, 胡尔海, 余泓, 颜清宇. 二维电催化剂的局域电子调控策略[J]. 催化学报, 2023, 48: 1-14.
Cheng-Feng Du, Erhai Hu, Hong Yu, Qingyu Yan. Strategies for local electronic structure engineering of two-dimensional electrocatalysts[J]. Chinese Journal of Catalysis, 2023, 48: 1-14.
Fig. 1. (a) Schematic illustration of electronic coupling between Ni, Fe, and V atoms in Ni3Fe, Ni3V, and Ni3Fe0.5V0.5. Reprinted with permission from Ref. [72]. Copyright 2018, Springer Nature Limited. (b) Schematic illustration of multimetal oxide nanoplates and the free-energy profiles for OER at U = 1.23 V. Reprinted with permission from Ref. [74]. Copyright 2020, American Chemical Society.
Fig. 2. (a) Optimized structures of NiPS3 and Se-doped NiPS3 models for OH*, O*, and OOH* deposition. Reprinted with permission from Ref. [85]. Copyright 2021, John Wiley and Sons. (b) Optimized structures of H-adsorbed Mo2C, Co-Mo2C, Mo(V)-Mo2C, and Co-Mo(V)-Mo2C slab models (left), and charge density distributions of Co-Mo2C and Co-Mo(V)-Mo2C (right). Reprinted with permission from Ref. [92]. Copyright 2020, John Wiley and Sons.
Fig. 3. (a) Contour maps of the electron localization function for 2H/1T-Ru-MoS2-Sv. (b) 2D maps of the electron density difference for SA Ru doping and S vacancy on the 2H/1T MoS2. Reprinted with permission from Ref. [108]. Copyright 2019, John Wiley and Sons. XANES spectra at the Ni K-edge (c) and k2-weighted Fourier transforms (d) of the Ni K-edge EXAFS spectra of Ni SACs/Ti3C2Tx, Ni foil, and NiO, and EXAFS fitting results for Ni SACs/Ti3C2Tx. (e) Wavelet-transformed Ni K-edge EXAFS spectra of Ni SACs/Ti3C2Tx, Ni foil, and NiO. Reprinted with permission from Ref. [115]. Copyright 2022, John Wiley and Sons.
Fig. 4. (a) Atomic charges of the transition metals embedded in screened-doped Mo2TiC2Tx. Reprinted with permission from Ref. [103]. Copyright 2019, John Wiley and Sons. (b) Calculated projected density of states (PDOS) of SA Ru-Mo2CO2, Mo2CO2, and Ru (001) with aligned Fermi levels. Mass-normalized NH3 yield rates of SA Ru-doped Mo2CTx (c) and Faradaic efficiencies (d) of the SA Ru-doped Mo2CTx at each applied potential. Reprinted with permission from Ref. [102]. Copyright 2020, John Wiley and Sons.
Fig. 5. (a) Side-views of the differential charge densities of MoS2/graphene (G), LDH/G, and MoS2/LDH bilayer structures with an isosurface value of 0.003 e ??3. Reprinted with permission from Ref. [121]. Copyright 2019, American Chemical Society. (b) ΔGH* calculated at the equilibrium potential (U = 0 V) for NiPS3/Ni2P, Ni2P (001), Ni2P (110), and NiPS3 (110); the insets show the corresponding density functional theory-optimized configurations of H* adsorption. (c) Distribution of the charge density difference at the NiPS3/Ni2P interface, where the red and green regions represent electron accumulation (Δρ = +0.01 e × Bohr?3) and electron depletion (Δρ = ?0.01 e × Bohr?3), respectively. Reprinted with permission from Ref. [124]. Copyright 2019, American Chemical Society.
Fig. 6. (a) d-band centers for CoC2O4, CoC2O4@MXene, and R-CoC2O4@MXene. (b) Differential charge density of R-CoC2O4@MXene (the yellow zone represents charge accumulation, while the blue zone represents charge dispersion). Reprinted with permission from Ref. [129]. Copyright 2022, Springer Nature Limited. (c) Electrostatic potential distribution along the z-axis of the heterojunction of the MoNi4/Mo2TiC2O2 monolayer and (d) differential charge density diagram of the interfacial region. Reprinted with permission from Ref. [131]. Copyright 2022, John Wiley and Sons.
Fig. 7. (a) Structure and density of states (DOS) of the S vacancy (VS), single H-adsorbed VS (H-VS), and double H-adsorbed VS (2H-VS). The total DOS and partial DOS projected on the three nearest neighbor Mo atoms (MoNN) around the VS are shown. Possible charge states q for each defect are also indicated. Reprinted with permission from Ref. [134]. Copyright 2018, American Chemical Society. (b) Relaxed structures after molecular water adsorption onto pristine and defective NiPS3 samples, and dissociative water adsorption to defective NiPS3. Electron density accumulation (or depletion) is shown in red (or blue). Green, violet, orange, red, and light-blue spheres represent Ni, P, S, O, and H atoms, respectively. Reprinted with permission from Ref. [135]. Copyright 2021, John Wiley and Sons.
Fig. 8. (a) Schematic of S vacancy generation in an MoS2 model using different strain conditions. (b) Illustration of Mo adsorption sites with different coordination structures. (c) Calculated free-energy diagram of HER for a pristine MoS2 model under 2%, 4%, and 5% uniaxial/biaxial strain conditions. Reprinted with permission from Ref. [149]. Copyright 2022, John Wiley and Sons.
|
[1] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[2] | 张季, 俞爱民, 孙成华. 非金属掺杂石墨烯异核双原子催化剂氮还原特性研究[J]. 催化学报, 2023, 52(9): 263-270. |
[3] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
[4] | 洪岩, 王琦, 阚子旺, 张禹烁, 郭晶, 李思琦, 刘松, 李斌. 电化学氮还原氨反应催化剂的最新研究进展[J]. 催化学报, 2023, 52(9): 50-78. |
[5] | 刘勇, 赵晓丽, 隆昶, 王晓艳, 邓邦为, 李康璐, 孙艳娟, 董帆. 原位构筑动态Cu/Ce(OH)x界面用于高活性、高选择性和高稳定性硝酸盐还原合成氨[J]. 催化学报, 2023, 52(9): 196-206. |
[6] | 高晖, 张恭, 程东方, 王永涛, 赵静, 李晓芝, 杜晓伟, 赵志坚, 王拓, 张鹏, 巩金龙. 构建Cu台阶位促进电催化CO2还原制醇类化学品的研究[J]. 催化学报, 2023, 52(9): 187-195. |
[7] | 邹心仪, 顾均. 酸性条件下二氧化碳高效电还原策略[J]. 催化学报, 2023, 52(9): 14-31. |
[8] | 周波, 石建巧, 姜一民, 肖磊, 逯宇轩, 董帆, 陈晨, 王特华, 王双印, 邹雨芹. 强化脱氢动力学实现超低电池电压和大电流密度下抗坏血酸电氧化[J]. 催化学报, 2023, 50(7): 372-380. |
[9] | 贡立圆, 王颖, 刘杰, 王显, 李阳, 侯帅, 武志坚, 金钊, 刘长鹏, 邢巍, 葛君杰. 重塑位于火山曲线右支的弱吸附金属单原子位点的配位环境及电子结构[J]. 催化学报, 2023, 50(7): 352-360. |
[10] | 耿仕鹏, 陈利明, 陈海鑫, 王毅, 丁朝斌, 蔡丹丹, 宋树芹. 揭示层状晶态CoMoO4的水裂解电催化机制: 从晶面选择到活性位点设计的理论研究[J]. 催化学报, 2023, 50(7): 334-342. |
[11] | 王元男, 王立娜, 张可新, 徐靖尧, 武倩楠, 谢周兵, 安伟, 梁宵, 邹晓新. 钙钛矿氧化物在水裂解反应中的电催化研究[J]. 催化学报, 2023, 50(7): 109-125. |
[12] | 周纳, 王家志, 张宁, 王志, 王恒国, 黄岗, 鲍迪, 钟海霞, 张新波. 富含缺陷的Cu@CuTCNQ复合材料增强电催化硝酸盐还原成氨[J]. 催化学报, 2023, 50(7): 324-333. |
[13] | 李轩, 蒋兴星, 孔艳, 孙建桔, 胡琪, 柴晓燕, 杨恒攀, 何传新. GaN/In2O3的界面工程用于高效电催化CO2还原制备甲酸[J]. 催化学报, 2023, 50(7): 314-323. |
[14] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. 用于电化学能量转换反应的非贵金属单原子催化剂[J]. 催化学报, 2023, 50(7): 195-214. |
[15] | 牛青, 米林华, 陈玮, 李秋军, 钟升红, 于岩, 李留义. 基于共价有机框架的单位点光(电)催化材料的研究进展[J]. 催化学报, 2023, 50(7): 45-82. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||