催化学报 ›› 2023, Vol. 51: 204-215.DOI: 10.1016/S1872-2067(23)64466-3

• 论文 • 上一篇    下一篇

MOF/CdS梯型光催化剂同时进行苯甲醇氧化和析氢反应及其机理研究

刘博文a, 蔡家杰a, 张建军b, 谭海燕c, 程蓓a,*(), 许景三d,*()   

  1. a武汉理工大学材料材料复合新技术国家重点实验室, 湖北武汉 430070, 中国
    b中国地质大学(武汉) 材料与化学学院, 太阳燃料实验室, 湖北武汉 430074, 中国
    c湖北民族大学化学与环境工程学院, 湖北恩施 445000, 中国
    d昆士兰科技大学化学与物理学院材料科学中心, 昆士兰布里斯班4001, 澳大利亚
  • 收稿日期:2023-05-08 接受日期:2023-06-02 出版日期:2023-08-18 发布日期:2023-09-11
  • 通讯作者: *电子信箱: chengbei2013@whut.edu.cn (程蓓), jingsan.xu@qut.edu.au (许景三).
  • 基金资助:
    国家重点研发计划(2018YFB1502001);国家重点研发计划(2022YFB3803600);国家自然科学基金(51932007);国家自然科学基金(22238009);国家自然科学基金(22262012);国家自然科学基金(2278324);国家自然科学基金(U1905215);国家自然科学基金(52073223);湖北省自然科学基金(2022CFA001)

Simultaneous benzyl alcohol oxidation and H2 generation over MOF/CdS S-scheme photocatalysts and mechanism study

Bowen Liua, Jiajie Caia, Jianjun Zhangb, Haiyan Tanc, Bei Chenga,*(), Jingsan Xud,*()   

  1. aState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China
    bLaboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, Hubei, China
    cSchool of Chemistry and Environmental Engineering, Hubei University for Nationalities, Enshi 445000, Hubei, China
    dSchool of Chemistry and Physics & Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
  • Received:2023-05-08 Accepted:2023-06-02 Online:2023-08-18 Published:2023-09-11
  • Contact: *E-mail: chengbei2013@whut.edu.cn (B. Cheng), jingsan.xu@qut.edu.au (J. Xu).
  • Supported by:
    National Key Research and Development Program of China(2018YFB1502001);National Key Research and Development Program of China(2022YFB3803600);National Natural Science Foundation of China(51932007);National Natural Science Foundation of China(22238009);National Natural Science Foundation of China(22262012);National Natural Science Foundation of China(U1905215);National Natural Science Foundation of China(52073223);Natural Science Foundation of Hubei Province of China(2022CFA001);National Natural Science Foundation of China(22278324)

摘要:

太阳能驱动的光催化水分解制氢是一种清洁、可持续的技术,可以减少碳排放.一般来说,光催化全解水的析氧半反应过程需要消耗四个空穴,且迟缓的反应动力学会抑制整体反应,因此光催化全解水极具挑战性.在光催化制氢中通常利用空穴牺牲剂来提升产氢半反应的效率.然而,这些过程会产生无用的氧化产物,造成光生空穴氧化能力的浪费,且增加了系统成本.因此,构建一个由光催化产氢和选择性有机合成相结合的双功能氧化还原体系,可同时利用光生电子和空穴,并且产物中氢气和高附加值的有机产品容易分离,因此具有较高的可持续经济效应.利用梯型异质结将两种带隙适合且能带结构匹配的光催化剂复合在一起,可以最大程度地利用两种光催化剂的氧化还原能力,为解决上述问题提供了一条理想途径.
本文采用化学浴法将CdS纳米颗粒原位生长在锆基金属有机框架UiO-66-NH2(U6N)上.在光照条件下,梯型异质结催化苯甲醇选择性氧化生成苯甲醛和氢气的性能大幅度提升,UC0.75(U6N/CdS理论质量比为0.75)复合物光照3h产氢速率为630μmol·g‒1 h‒1,同时苯甲醇氧化为苯甲醛的选择性达到99%.原位辐照X射线光电子能谱结果表明,UC0.75梯型异质结界面的电子转移路径,在暗态下电子由CdS转移到U6N,在光照下电子由U6N转移到CdS.利用飞秒瞬态吸收(fs-TA)光谱进一步研究了异质结的载流子迁移的动力学信息,结果表明,复合样品中基态漂白信号衰减时间减少,梯型异质结界面处电子转移效率较高.此外,通过原位漫反射红外傅里叶变换光谱、电子顺磁共振和同位素实验揭示了苯甲醇的氧化机理,光照下,位于U6N的光生空穴与苯甲醇相互作用,先氧化苯甲醇上的α-C产生•CH(OH)Ph,然后进一步氧化产生苯甲醛,同时,CdS上的光生电子与水中产生的H+结合产生氢气.综上,本文通过飞秒瞬态吸收光谱(fs-TAS)光谱来阐述梯型异质结的电子转移机制,并为金属有机框架/无机物复合光催化剂的设计提供了借鉴.

关键词: 梯型异质结, 光催化产氢, 选择性有机氧化, 超快光谱

Abstract:

The conversion from solar energy into storable chemical energy can be achieved through synergistic coupling of photocatalytic H2 production and organic synthesis, during which photogenerated electrons and holes can be simultaneously utilized. Herein, we combined a zirconium-based metal-organic framework, UiO-66-NH2, and CdS nanoparticles (NPs) to form a core-shell structure by a chemical bath method. The step-scheme (S-scheme) heterojunction exhibits both substantially enhanced selective oxidation of benzyl alcohol and efficient H2 generation under light irradiation simultaneously. The electron transfer paths at the S-scheme heterostructure interface were investigated in depth by in situ irradiated X-ray photoelectron spectroscopy. The dynamics of carrier migration at the heterojunction were obtained through femtosecond transient absorption (fs-TA) spectroscopy. Furthermore, the evolution mechanism of benzaldehyde was revealed by in situ diffuse reflectance infrared Fourier transform spectroscopy and electron paramagnetic resonance. This work illustrates the electron transfer mechanism of S-scheme heterojunction by fs-TA spectroscopy and provides new insights into the design of MOF/inorganic composite photocatalysts.

Key words: Step-scheme heterojunction, Photocatalytic hydrogen production, Selective organic oxidation, Ultrafast spectroscopy