催化学报 ›› 2023, Vol. 51: 168-179.DOI: 10.1016/S1872-2067(23)64474-2

• 论文 • 上一篇    下一篇

具有高效激子解离和明确反应位点的Tröger碱基三维多孔芳基有机骨架及其光催化近单一选择性CO2转化

殷楠a,1, 陈伟斌a,1, 杨勇a,*(), 唐钲a, 李攀杰a, 张潇月a, 唐兰勤c, 王天宇a, 王阳a, 周勇b,d,*(), 邹志刚b   

  1. a南京理工大学化学与化工学院, 江苏南京210094
    b南京大学物理学院, 环境材料与再生能源研究中心, 江苏南京210093
    c盐城工学院化学化工学院, 江苏省环保重点实验室, 江苏盐城224051
    d安徽工程大学化学与环境工程学院, 安徽芜湖241002
  • 收稿日期:2023-04-29 接受日期:2023-06-20 出版日期:2023-08-18 发布日期:2023-09-11
  • 通讯作者: *电子信箱: yychem@njust.edu.cn (杨勇), zhouyong1999@nju.edu.cn (周勇).
  • 作者简介:第一联系人:1共同第一作者.
  • 基金资助:
    国家自然科学基金(51303083);国家自然科学基金(51922050);江苏省自然科学基金(BK20191293);中央高校基本科研基金(30920021123);江苏省环境工程重点实验室开放基金(JBGS004)

Tröger’s base derived 3D-porous aromatic frameworks with efficient exciton dissociation and well-defined reactive site for near-unity selectivity of CO2 photo-conversion

Nan Yina,1, Weibin Chena,1, Yong Yanga,*(), Zheng Tanga, Panjie Lia, Xiaoyue Zhanga, Lanqin Tangc, Tianyu Wanga, Yang Wanga, Yong Zhoub,d,*(), Zhigang Zoub   

  1. aSchool of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
    bEco-Materials and Renewable Energy Research Center (ERERC), School of Physics, Nanjing University, Nanjing 210093, Jiangsu, China
    cKey Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, China
    dSchool of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241002, Anhui, China
  • Received:2023-04-29 Accepted:2023-06-20 Online:2023-08-18 Published:2023-09-11
  • Contact: *E-mail: yychem@njust.edu.cn (Y. Yang), zhouyong1999@nju.edu.cn (Y. Zhou).
  • About author:First author contact:1Contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(51303083);National Natural Science Foundation of China(51922050);Natural Science Foundation of Jiangsu Province(BK20191293);Fundamental Research Funds for the Central Universities(30920021123);Open Fund of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province(JBGS004)

摘要:

植物光合作用是吸收光能,把CO2和水转化成富能有机物,同时释放氧气的过程.受此启发,利用太阳光将CO2转化为碳氢燃料的人工碳中和技术引起了广泛关注.人工光合作用能否成功实施取决于光催化剂的设计制备.无机半导体已被广泛研究用于CO2光还原反应(CO2PRR),但其存在金属氧化物的带隙较宽且难以调节、导致光吸收较差和金属硫化物的光腐蚀问题严重等明显的缺点.此外,高载流子复合率和低比表面积会影响光催化效率,从而限制光子利用.因此,基于有机聚合物的无金属催化剂因其突出的可设计调控性而被提出,其中,具有超高比表面积的材料—多孔芳香骨架(PAFs)聚合物是研究热点之一,但是传统PAFs材料多为二维平面结构,用于光催化的无金属三维PAFs报道较少.此外,具有孤对电子的杂原子(N,B,F)修饰的材料可以与CO2分子产生特定的偶极-四极相互作用,提高材料对CO2的吸附和活化能力,是提升有机聚合物光催化剂性能的有效策略.
本文采用Sonogashira-Hagihara偶联将具有不同共轭程度的芳香炔烃(2,2’,7,7‘-四乙炔基-9,9’-螺二芴,SPF-T;四(4-乙炔基苯基)甲烷,TEPM-T;1,1,2,2-四(4-乙炔基苯基)乙烯,TEPE-T)与含有N杂原子的Tröger碱聚合制备了具有三维结构的多孔芳香骨架聚合物X-TB-PAFs(X = TEPE,TEPM,SPF).通过X-射线衍射、红外光谱、13C核磁共振(NMR)以及1H NMR等表征手段验证了目标聚合物的成功合成.通过紫外-可见光谱和Mott-Schottky曲线测试研究了聚合物具体的能带结构,发现三种PAFs聚合物材料在热力学上同时满足光催化CO2-CO的还原反应条件(Eθ = ‒0.51V vs. NHE,pH = 7)和光催化H2O-O2的氧化条件(Eθ = 0.82V vs. NHE, pH = 7).
V形骨架结构的Tröger碱(TB)单元和芳炔的结合赋予了聚合物刚性稳定的孔隙率以及较高的比表面积,材料中的多孔结构可以使其暴露更多的活性位点,三维框架结构为反应物接近活性位点提供了丰富的开放式空腔,这些都有利于材料对CO2的捕获,增强催化剂对CO2的吸附/活化能力.此外,炔基充当连接通道还可以增强体系的载流子迁移率,提升材料的光催化性能.密度泛函理论计算和光电性能测试结果表明,TB官能团引入带来的分子内极化和电子陷阱位点的优势,其与三维共轭网络结构一起协同调节了光生载流子的分离和反应位点分布.三种三维PAFs中,基于全共轭结构TEPE-T的TEPE-TB-PAF表现出最高效的光生载流子传输与分离效率,在没有助催化剂和牺牲剂的情况下表现出较好的光催化CO产率(194.50μmol g‒1 h‒1)和近乎单一的选择性(99.74%).全共轭TEPE-T的引入和分子内极化的存在可以促进框架内载流子的分离和迁移.材料中的电偶极矩(从负电荷到正电荷)指向TB中含有叔氮官能团的桥接位点,使其成为明确的催化反应位点.光电流和阻抗测试结果表明,TEPE-TB-PAF具有更好的电子-空穴分离能力和更小的电荷迁移位阻.三维框架构建产生的多重散射截面可以促进材料中的光子吸收,从而提高其光催化性能.理论计算和原位漫反射傅立叶变换红外光谱结果表明,材料中CO解吸的低能垒和*CHO形成的高能垒是TEPE-TB-PAF高CO产率和选择性的根本机制.综上,本文为多功能高效有机聚合物光催化剂的合成提供了有效途径,并为同时改善光催化剂的转化率和选择性提供了借鉴.

关键词: CO2光还原, 多孔芳香骨架, Tröger 碱, 三维网络, 分子内极化

Abstract:

The overall photocatalytic conversion of CO2 and H2O to fuel and O2 is challenging. In this study, a series of three-dimensional Tröger’s base-derived porous aromatic frameworks (3D-X-TB-PAFs (X = TEPE, TEPM, SPF)) featuring designated reaction sites and unique charge transfer properties were developed. The incorporation of V-shaped Tröger’s base (TB) units and aromatic alkynes imparts the polymers with permanent porosity, additional photon scattering cross-sections, and enhanced CO2 adsorption/activation capabilities. Density functional theory calculations and optoelectronic measurements revealed the formation of intramolecular built-in polarization and electron-trap sites induced by TB, which modulated charge separation and customized reaction sites in collaboration with 3D networks. In addition, product allocation during the photoreduction of CO2 was regulated by the photooxidation of H2O. Among the as-prepared 3D-PAFs, the most efficient electron transport channel was demonstrated by the TEPE-TB-PAF with fully conjugated TEPE-T. In the absence of cocatalysts and sacrificial agents, TEPE-TB-PAF exhibits a competitive CO formation rate (194.50 μmol g-1 h-1) with near-unity selectivity (99.74%). Significantly, the low energy barrier for CO desorption and the high energy barrier for *CHO formation contribute to the high efficiency of TEPE-TB-PAF, as demonstrated by computational exploration and in situ diffuse reflectance infrared Fourier transform spectra. This work offers efficient building blocks for the synthesis of multifunctional organic photocatalysts and groundbreaking insights into the simultaneous enhancement of photocatalytic reactivity and selectivity.

Key words: CO2 photoreduction, Porous aromatic frameworks, Tröger's base, 3D networks, Intramolecular built-in polarization